Stabilized Finite Element Methods for the Schrodinger Wave Equation

被引:4
|
作者
Kannan, Raguraman [2 ]
Masud, Arif [1 ]
机构
[1] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Grad Res Assistant, Dept Civil & Mat Engn, Chicago, IL 60607 USA
来源
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME | 2009年 / 76卷 / 02期
关键词
Schrodinger wave equation; quantum mechanics; finite elements; stabilized formulations; DIFFERENCE-PSEUDOPOTENTIAL METHOD; ELECTRONIC-STRUCTURE CALCULATIONS;
D O I
10.1115/1.3059564
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper presents two stabilized formulations for the Schrodinger wave equation. First formulation is based on the Galerkin/least-squares (GLS) method, and it sets the stage for exploring variational multiscale ideas for developing the second stabilized formulation. These formulations provide improved accuracy on cruder meshes as compared with the standard Galerkin formulation. Based on the proposed formulations a family of tetrahedral and hexahedral elements is developed. Numerical convergence studies are presented to demonstrate the accuracy and convergence properties of the two methods for a model electronic potential for which analytical results are available. [DOI: 10.1115/1.3059564]
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [1] STABILITY, CONVERGENCE, AND ACCURACY OF STABILIZED FINITE ELEMENT METHODS FOR THE WAVE EQUATION IN MIXED FORM
    Badia, Santiago
    Codina, Ramon
    Espinoza, Hector
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (04) : 1729 - 1752
  • [2] Space time stabilized finite element methods for a unique continuation problem subject to the wave equation
    Burman, Erik
    Feizmohammadi, Ali
    Muench, Arnaud
    Oksanen, Lauri
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 : S969 - S991
  • [3] Stabilized finite element methods and feedback control for Burgers' equation
    Atwell, JA
    King, BB
    PROCEEDINGS OF THE 2000 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2000, : 2745 - 2749
  • [4] Revisiting stabilized finite element methods for the advective-diffusive equation
    Franca, LP
    Hauke, G
    Masud, A
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (13-16) : 1560 - 1572
  • [5] Data assimilation for the heat equation using stabilized finite element methods
    Burman, Erik
    Oksanen, Lauri
    NUMERISCHE MATHEMATIK, 2018, 139 (03) : 505 - 528
  • [6] Data assimilation for the heat equation using stabilized finite element methods
    Erik Burman
    Lauri Oksanen
    Numerische Mathematik, 2018, 139 : 505 - 528
  • [7] Unique continuation for the Helmholtz equation using stabilized finite element methods
    Burman, Erik
    Nechita, Mihai
    Oksanen, Lauri
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 129 : 1 - 22
  • [8] On hp convergence of stabilized finite element methods for the convection–diffusion equation
    Codina R.
    SeMA Journal, 2018, 75 (4) : 591 - 606
  • [9] Developing weak Galerkin finite element methods for the wave equation
    Huang, Yunqing
    Li, Jichun
    Li, Dan
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (03) : 868 - 884
  • [10] A Unified Framework of Stabilized Finite Element Methods for Solving the Boltzmann Transport Equation
    He, Qingming
    Fang, Chao
    Cao, Liangzhi
    Zhang, Haoyu
    NUCLEAR SCIENCE AND ENGINEERING, 2023, 197 (03) : 472 - 484