Charge collection and electrical characterization of neutron irradiated silicon pad detectors for the CMS High Granularity Calorimeter

被引:6
作者
Akchurin, N. [1 ]
Almeida, P. [6 ]
Altopp, G. [4 ]
Alyari, M. [5 ]
Bergauer, T. [7 ]
Brondolin, E. [6 ]
Burkle, B. [4 ]
Frey, W. D. [3 ]
Gecse, Z. [5 ]
Heintz, U. [4 ]
Hinton, N. [4 ]
Kuryatkov, V [2 ]
Lipton, R. [5 ]
Mannelli, M. [6 ]
Mengke, T. [1 ]
Paulitsch, P. [7 ]
Peltola, T. [1 ]
Pitters, F. [7 ]
Sicking, E. [6 ]
Spencer, E. [4 ]
Tripathi, M. [9 ]
Pinto, M. V. Barreto [6 ]
Voelker, J. [4 ]
Wang, Z. [1 ]
Yohay, R. [8 ]
机构
[1] Texas Tech Univ, Dept Phys & Astron, 1200 Mem Circle, Lubbock, TX 79409 USA
[2] Texas Tech Univ, Nanotech Ctr, 902 Boston Ave, Lubbock, TX 79409 USA
[3] Univ Calif Davis, McClellan Nucl Reactor Ctr, 5335 Price Ave, Davis, CA 95616 USA
[4] Brown Univ, Dept Phys, 182 Hope St, Providence, RI 02912 USA
[5] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA
[6] CERN, Espl Particules 1, Geneva, Switzerland
[7] Inst Hochenergiephys, Nikolsdorfer G 18, Vienna, Austria
[8] Florida State Univ, Dept Phys, 77 Chieftan Way, Tallahassee, FL 32306 USA
[9] Univ Calif Davis, Dept Phys, 1 Shields Ave, Davis, CA 95616 USA
关键词
Detector modelling and simulations II (electric fields; charge transport; multiplication and induction; pulse formation; electron emission; etc); Radiation-hard detectors; Si microstrip and pad detectors; RADIATION-DAMAGE;
D O I
10.1088/1748-0221/15/09/P09031
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The replacement of the existing endcap calorimeter in the Compact Muon Solenoid (CMS) detector for the high-luminosity LHC (HL-LHC), scheduled for 2027, will be a high granularity calorimeter. It will provide detailed position, energy, and timing information on electromagnetic and hadronic showers in the immense pileup of the HL-LHC. The High Granularity Calorimeter (HGCAL) will use 120-, 200-, and 300-mu m-thick silicon (Si) pad sensors as the main active material and will sustain 1 MeV neutron equivalent fluences up to about 1016 neq cm 2. In order to address the performance degradation of the Si detectors caused by the intense radiation environment, irradiation campaigns of test diode samples from 8-inch and 6-inch wafers were performed in two reactors. Characterization of the electrical and charge collection properties after irradiation involved both bulk polarities for the three sensor thicknesses. Since the Si sensors will be operated at 30 degrees C to reduce increasing bulk leakage current with fluence, the charge collection investigation of 30 irradiated samples was carried out with the infrared-TCT setup at 30 ffiC. TCAD simulation results at the lower fluences are in close agreement with the experimental results and provide predictions of sensor performance for the lower fluence regions not covered by the experimental study. All investigated sensors display 60% or higher charge collection efficiency at their respective highest lifetime fluences when operated at 800V, and display above 90% at the lowest fluence, at 600V. The collected charge close to the fluence of 1016 neq cm 2 exceeds 1 degrees C at voltages beyond 800V.
引用
收藏
页数:28
相关论文
共 29 条
[1]   Silicon detectors for the sLHC [J].
Affolder, A. ;
Aleev, A. ;
Allport, P. P. ;
Andricek, L. ;
Artuso, M. ;
Balbuena, J. P. ;
Barabash, L. ;
Barber, T. ;
Barcz, A. ;
Bassignana, D. ;
Bates, R. ;
Battaglia, M. ;
Beimforde, M. ;
Bemardini, J. ;
Betancourt, C. ;
Bilei, G. M. ;
Bisello, D. ;
Blue, A. ;
Bohm, J. ;
Bolla, G. ;
Borgia, A. ;
Borrello, L. ;
Bortoletto, D. ;
Boscardin, M. ;
Bosma, M. J. ;
Bowcock, T. J. V. ;
Breindl, M. ;
Broz, J. ;
Bruzzi, M. ;
Brzozowski, A. ;
Buhmann, P. ;
Buttar, C. ;
Campabadal, F. ;
Candelori, A. ;
Casse, G. ;
Charron, S. ;
Chren, D. ;
Cihangir, S. ;
Cindro, V. ;
Collins, P. ;
Gil, E. Cortina ;
Costinoaia, C. A. ;
Creanza, D. ;
Cristobal, C. ;
Dalla Betta, G. -F. ;
de Boer, W. ;
De Palma, M. ;
Demina, R. ;
Dierlamm, A. ;
Diez, S. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 658 (01) :11-16
[2]   Effects of Varying Substrate Thickness on the Collected Charge From Highly Irradiated Planar Silicon Detectors [J].
Affolder, Anthony ;
Allport, Phil ;
Brown, Henry ;
Casse, Gianluigi .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2011, 58 (06) :3384-3391
[3]  
Balbuena J.P., 2010, CERNLHCC2010012
[4]   STRAGGLING IN THIN SILICON DETECTORS [J].
BICHSEL, H .
REVIEWS OF MODERN PHYSICS, 1988, 60 (03) :663-699
[5]  
Cartiglia N., 2019, POS
[6]  
CMS collaboration, 2017, P 2017 IEEE NUCL SCI
[7]  
CMS Collaboration Collaboration, 2017, CERN-LHCC-2017-023, DOI DOI 10.17181/CERN.IV8M.1JY2
[8]   Radiation hardness study of Silicon Detectors for the CMS High Granularity Calorimeter (HGCAL) [J].
Curras, E. ;
Mannelli, M. ;
Moll, M. ;
Nourbakhsh, S. ;
Steinbrueck, G. ;
Vila, I. .
JOURNAL OF INSTRUMENTATION, 2017, 12
[9]  
Eber R., 2013, THESIS
[10]   Radiation damage studies on MCz and standard and oxygen enriched epitaxial silicon devices [J].
Fretwurst, E. ;
Hoenniger, F. ;
Kramberger, G. ;
Lindstroem, G. ;
Pintilie, I. ;
Roeder, R. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 583 (01) :58-63