BLOW-UP TIME AND BLOW-UP RATE FOR PSEUDO-PARABOLIC EQUATIONS WITH WEIGHTED SOURCE

被引:1
作者
Di, Huafei [1 ,2 ]
Shang, Yadong [1 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[2] Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA
来源
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY | 2020年 / 35卷 / 04期
关键词
Pseudo-parabolic equation; upper and lower bounds; blow-up rate; weighted source; BOUNDS; BEHAVIOR;
D O I
10.4134/CKMS.c200035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we are concerned with the blow-up phenomena for a class of pseudo-parabolic equations with weighted source u(t) - Delta u - Delta u(t) = a(x)f(u) subject to Dirichlet (or Neumann) boundary conditions in any smooth bounded domain Omega subset of R-n (n >= 1). Firstly, we obtain the upper and lower bounds for blow-up time of solutions to these problems. Moreover, we also give the estimates of blow-up rate of solutions under some suitable conditions. Finally, three models are presented to illustrate our main results. In some special cases, we can even get some exact values of blow-up time and blow-up rate.
引用
收藏
页码:1143 / 1158
页数:16
相关论文
共 28 条
[1]  
Alshin A.B., 2011, SERIES NONLINEAR ANA, V15, DOI [10.1515/ 9783110255294, DOI 10.1515/9783110255294]
[2]   THERMAL-BEHAVIOR FOR A CONFINED REACTIVE GAS [J].
BEBERNES, J ;
BRESSAN, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1982, 44 (01) :118-133
[3]   Global well-posedness for a nonlocal semilinear pseudo-parabolic equation with conical degeneration [J].
Di, Huafei ;
Shang, Yadong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (05) :4566-4597
[4]   Blow-up phenomena for a pseudo-parabolic equation with variable exponents [J].
Di, Huafei ;
Shang, Yadong ;
Peng, Xiaoming .
APPLIED MATHEMATICS LETTERS, 2017, 64 :67-73
[5]   ON THE MAXIMUM PRINCIPLE FOR PSEUDOPARABOLIC EQUATIONS [J].
DIBENEDETTO, E ;
PIERRE, M .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (06) :821-854
[6]  
DZEKTSER ES, 1972, DOKL AKAD NAUK SSSR+, V202, P1031
[7]   A SEMILINEAR PARABOLIC-SYSTEM IN A BOUNDED DOMAIN [J].
ESCOBEDO, M ;
HERRERO, MA .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1993, 165 :315-336
[8]   Blow-up analysis for a semilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux [J].
Fang, Zhong Bo ;
Wang, Yuxiang .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (05) :2525-2541
[9]  
Korpusov M.O., 2003, Comput. Math. Math. Phys, V43, P1765
[10]  
Lions J.-L., 1969, Quelques methodes de resolution des problemes aux limites non lineaires