Data Assimilation Versus Machine Learning: Comparative Study Of Fish Catch Forecasting

被引:1
作者
Horiuchi, Yuka [1 ]
Kokaki, Yuya [1 ]
Kobayashi, Tetsunori
Ogawa, Tetsuji [1 ]
机构
[1] Waseda Univ, Dept Commun & Comp Engn, Tokyo, Japan
来源
OCEANS 2019 - MARSEILLE | 2019年
关键词
state space models; gradient boosting decision trees; data assimilation; machine learning; fish catch forecasting; STATE-SPACE MODELS; ABUNDANCE; DYNAMICS;
D O I
10.1109/oceanse.2019.8867066
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Data assimilation (DA) and machine learning (ML) are empirically compared for automatic daily fish catch forecasting (DFCF). ML would be a promising approach if large-scale data are available for training. Otherwise, DA would perform well, where prior knowledge on a monitoring target is incorporated into modeling. The present study aims to clarify the robustness of both approaches in DFCF with a small amount of data, and their evolution as the amount of training data increases. Experimental comparisons using catch and meteorological data demonstrate that a DA-based DFCF system yields a significant improvement over an ML-based systems with a small amount of data, and is comparable with ML-based systems with sufficient amount of data.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] A Comparative Study of Machine Learning-Based Methods for Global Horizontal Irradiance Forecasting
    Gbemou, Shab
    Eynard, Julien
    Thil, Stephane
    Guillot, Emmanuel
    Grieu, Stephane
    ENERGIES, 2021, 14 (11)
  • [32] A Comparative Study of Different Machine Learning Methods for Electricity Prices Forecasting of an Electricity Market
    Foruzan, Elham
    Scott, Stephen D.
    Lin, Jeremy
    2015 NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2015,
  • [33] Comparative Study of Forecasting Global Mean Sea Level Rising using Machine Learning
    Hassan, Kazi Md Abir
    Haque, Md Atiqul
    Ahmed, Sakif
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS AND INFORMATION TECHNOLOGY 2021 (ICECIT 2021), 2021,
  • [34] The comparative study of machine learning agent models in flood forecasting for tidal river reaches
    Ju Zhou
    Liming Chen
    Tengfei Hu
    Hao Lu
    Yong Shi
    Liangang Chen
    Scientific Reports, 15 (1)
  • [35] A Comparative Study of Time Series, Machine Learning, and Deep Learning Models for Forecasting Global Price of Wheat
    Abhishek Yadav
    Operations Research Forum, 5 (4)
  • [36] The effectiveness of machine learning methods in the nonlinear coupled data assimilation
    Xuan, Zi-ying
    Zheng, Fei
    Zhu, Jiang
    GEOSCIENCE LETTERS, 2024, 11 (01):
  • [37] Integrating Machine Learning and MLOps for Wind Energy Forecasting: A Comparative Analysis and Optimization Study on Türkiye's Wind Data
    Oyucu, Saadin
    Aksoz, Ahmet
    APPLIED SCIENCES-BASEL, 2024, 14 (09):
  • [38] Air Quality Forecasts Improved by Combining Data Assimilation and Machine Learning With Satellite AOD
    Lee, Seunghee
    Park, Seohui
    Lee, Myong-In
    Kim, Ganghan
    Im, Jungho
    Song, Chang-Keun
    GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (01)
  • [39] Data Assimilation with Missing Data in Nonstationary Environments for Probabilistic Machine Learning Models
    Wei, Yuying
    Law, Adrian Wing-Keung
    Yang, Chun
    JOURNAL OF COMPUTATIONAL SCIENCE, 2023, 74
  • [40] A Comparative Study of Machine Learning Classification Models on Customer Behavior Data
    Rusli, Nur Ida Aniza
    Zulkifle, Farizuwana Akma
    Ramli, Intan Syaherra
    SOFT COMPUTING IN DATA SCIENCE, SCDS 2023, 2023, 1771 : 222 - 231