The spread of a catalytic branching random walk

被引:24
作者
Carmona, Philippe [1 ]
Hu, Yueyun [2 ]
机构
[1] Univ Nantes, Lab Jean Leray, UMR 6629, F-44322 Nantes 03, France
[2] Univ Paris 13, Dept Math, Inst Galilee, LAGA UMR 7539, F-93430 Villetaneuse, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2014年 / 50卷 / 02期
关键词
Branching processes; Catalytic branching random walk; MARTINGALE CONVERGENCE; MINIMAL POSITION; BROWNIAN-MOTION; THEOREM;
D O I
10.1214/12-AIHP529
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a catalytic branching random walk on Z that branches at the origin only. In the supercritical regime we establish a law of large number for the maximal position M,,: For some constant alpha , M-n/n -> alpha almost surely on the set of infinite number of visits of the origin. Then we determine all possible limiting laws for M-n - alpha n as n goes to infinity.
引用
收藏
页码:327 / 351
页数:25
相关论文
共 30 条
[1]  
Aidekon E., ANN PROBAB IN PRESS
[2]   WEAK CONVERGENCE FOR THE MINIMAL POSITION IN A BRANCHING RANDOM WALK: A SIMPLE PROOF [J].
Aidekon, Elie ;
Shi, Zhan .
PERIODICA MATHEMATICA HUNGARICA, 2010, 61 (1-2) :43-54
[3]   Asymptotics of branching symmetric random walk on the lattice with a single source (vol 326, pg 975, 1998) [J].
Albeverio, S ;
Bogachev, LV ;
Yarovaya, EB .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (06) :585-585
[4]   Asymptotics of branching symmetric random walk on the lattice with a single source [J].
Albeverio, S ;
Bogachev, LV ;
Yarovaya, EB .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (08) :975-980
[5]   Branching random walk in a catalytic medium. I. Basic equations [J].
Albeverio, S ;
Bogachev, LV .
POSITIVITY, 2000, 4 (01) :41-100
[6]  
[Anonymous], DISCRETE MATH THEOR
[7]  
Athreya K. B., 2004, Branching processes
[8]   The almost-sure population growth rate in branching Brownian motion with a quadratic breeding potential [J].
Berestycki, J. ;
Brunet, E. ;
Harris, J. W. ;
Harris, S. C. .
STATISTICS & PROBABILITY LETTERS, 2010, 80 (17-18) :1442-1446
[9]   Measure change in multitype branching [J].
Biggins, JD ;
Kyprianou, AE .
ADVANCES IN APPLIED PROBABILITY, 2004, 36 (02) :544-581
[10]   MARTINGALE CONVERGENCE IN BRANCHING RANDOM-WALK [J].
BIGGINS, JD .
JOURNAL OF APPLIED PROBABILITY, 1977, 14 (01) :25-37