Quantitative stratification and higher regularity for biharmonic maps

被引:11
作者
Breiner, Christine [1 ]
Lamm, Tobias [2 ]
机构
[1] Fordham Univ, Dept Math, Bronx, NY 10458 USA
[2] Karlsruhe Inst Technol, Inst Anal, D-76133 Karlsruhe, Germany
关键词
HARMONIC MAPS; SINGULAR SET;
D O I
10.1007/s00229-015-0750-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove quantitative regularity results for stationary and minimizing extrinsic biharmonic maps. As an application, we determine sharp, dimension independent L (p) bounds for that do not require a small energy hypothesis. In particular, every minimizing biharmonic map is in W (4,p) for all . Further, for minimizing biharmonic maps from , we determine a uniform bound on the number of singular points in a compact set. Finally, using dimension reduction arguments, we extend these results to minimizing and stationary biharmonic maps into special targets.
引用
收藏
页码:379 / 398
页数:20
相关论文
共 32 条
[1]   A monotonicity formula for stationary biharmonic maps [J].
Angelsberg, G .
MATHEMATISCHE ZEITSCHRIFT, 2006, 252 (02) :287-293
[2]   ON THE SINGULAR SET OF STATIONARY HARMONIC MAPS [J].
BETHUEL, F .
MANUSCRIPTA MATHEMATICA, 1993, 78 (04) :417-443
[3]  
Chang SYA, 1999, COMMUN PUR APPL MATH, V52, P1113, DOI 10.1002/(SICI)1097-0312(199909)52:9<1113::AID-CPA4>3.0.CO
[4]  
2-7
[5]  
Chang SYA, 1999, COMMUN PUR APPL MATH, V52, P1099, DOI 10.1002/(SICI)1097-0312(199909)52:9<1099::AID-CPA3>3.0.CO
[6]  
2-O
[7]  
Cheeger J., PREPRINT
[8]  
Cheeger J., ARXIV13082514MATHDG
[9]   Quantitative Stratification and the Regularity of Mean Curvature Flow [J].
Cheeger, Jeff ;
Haslhofer, Robert ;
Naber, Aaron .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2013, 23 (03) :828-847
[10]   Quantitative stratification and the regularity of harmonic maps and minimal currents [J].
Cheeger, Jeff ;
Naber, Aaron .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2013, 66 (06) :965-990