There are genus one curves of every index over every number field

被引:12
作者
Clark, PL [1 ]
机构
[1] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2006年 / 594卷
关键词
D O I
10.1515/CRELLE.2006.040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that there exist genus one curves of every index over the rational numbers, answering affirmatively a question of Lang and Tate. The proof is "elementary" in the sense that it does not assume the finiteness of any Shafarevich-Tate group. On the other hand, using Kolyvagin's construction of a rational elliptic curve whose Mordell-Weil and Shafarevich-Tate groups are both trivial, we show that there are infinitely many genus one curves of every index over every number field.
引用
收藏
页码:201 / 206
页数:6
相关论文
共 11 条
[1]  
BOSCH S, 1990, ERGEBN MATH GRENZGEB, V21
[2]  
Cassels John W.S., 1961, J. London Math. Soc, V36, P177, DOI [10.1112/jlms/s1-36.1.177, DOI 10.1515/CRELLE.2012.004]
[3]  
CASSELS JWS, 1966, J LONDON MATH SOC, V41, P193
[4]   The period-index problem in WC-groups I: elliptic curves [J].
Clark, PL .
JOURNAL OF NUMBER THEORY, 2005, 114 (01) :193-208
[5]   PRINCIPAL HOMOGENEOUS SPACES OVER ABELIAN VARIETIES [J].
LANG, S ;
TATE, J .
AMERICAN JOURNAL OF MATHEMATICS, 1958, 80 (03) :659-684
[6]  
Milne J. S., 1986, Perspect. Math., V1
[7]   ELLIPTIC-CURVES WITH NO RATIONAL-POINTS [J].
NAKAGAWA, J ;
HORIE, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 104 (01) :20-24
[8]   The period-index obstruction for elliptic curves [J].
O'Neil, C .
JOURNAL OF NUMBER THEORY, 2002, 95 (02) :329-339
[9]  
STEIN W, UNPUB VERIFYING BIRC
[10]  
Stein WA, 2002, J REINE ANGEW MATH, V547, P139