Modelling prey in discrete time predator-prey systems

被引:1
作者
Mullan, Rory [1 ]
Glass, David H. [1 ]
McCartney, Mark [1 ]
机构
[1] Univ Ulster, Sch Comp & Math, Newtownabbey BT37 0QB, Antrim, North Ireland
来源
2013 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2013) | 2013年
关键词
Predator-Prey; Modelling Prey; Ecosystem Diversity; PATTERN-FORMATION; COMPETITION; CHAOS;
D O I
10.1109/SMC.2013.447
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A single predator, single prey ecological model, in which the behaviour of the populations is reliant upon two control parameters has been expanded to allow for multiple predators and prey to occupy the ecosystem. A focus has been placed on analysing the diversity of the ecosystem that develops as the model runs, assessing how many predator or prey species survive. This paper compares a standard Ricker model representation of prey behaviour with models based on the logistic and tent maps. It is found that the overall dynamics of the system can depend significantly on the model used.
引用
收藏
页码:2617 / 2622
页数:6
相关论文
共 13 条
[1]   Dispersal and edge behaviour of bark beetles and predators inhabiting red pine plantations [J].
Costa, Arnaud ;
Min, A. ;
Boone, Celia K. ;
Kendrick, Alexander P. ;
Murphy, Robert J. ;
Sharpee, William C. ;
Raffa, Kenneth F. ;
Reeve, John D. .
AGRICULTURAL AND FOREST ENTOMOLOGY, 2013, 15 (01) :1-11
[2]   Pattern formation in a space- and time-discrete predator-prey system with a strong Allee effect [J].
Diaz Rodrigues, Luiz Alberto ;
Mistro, Diomar Cristina ;
Petrovskii, Sergei .
THEORETICAL ECOLOGY, 2012, 5 (03) :341-362
[3]   Bifurcation and chaotic behavior of a discrete-time predator-prey system [J].
He, Zhimin ;
Lai, Xin .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (01) :403-417
[4]   Complex dynamic behaviors of a discrete-time predator-prey system [J].
Liu, Xiaoli ;
Xiao, Dongmei .
CHAOS SOLITONS & FRACTALS, 2007, 32 (01) :80-94
[5]  
Lotka A.J., 1958, Elements of mathematical biology
[6]  
Mullan Rory, 2011, ARTIF INTELL COGNIT, P344
[7]   DISPERSAL AND PATTERN-FORMATION IN A DISCRETE-TIME PREDATOR-PREY MODEL [J].
NEUBERT, MG ;
KOT, M ;
LEWIS, MA .
THEORETICAL POPULATION BIOLOGY, 1995, 48 (01) :7-43
[8]   Probing chaos and biodiversity in a simple competition model [J].
Roques, Lionel ;
Chekroun, Mickael D. .
ECOLOGICAL COMPLEXITY, 2011, 8 (01) :98-104
[9]  
Taylor R., 2012, J MATH BIOL
[10]  
Trites A.W., 2002, Encyclopedia of Marine Animals, P994