Multiplicative (generalized)-derivations and left ideals in semiprime rings

被引:0
作者
Ali, Asma [1 ]
Dhara, Basudeb [2 ]
Khan, Shahoor [1 ]
Ali, Farhat [1 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
[2] Belda Coll, Dept Math, Paschim Medinipur 721424, WB, India
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2015年 / 44卷 / 06期
关键词
Semiprime ring; left ideal; derivation; multiplicative derivation; generalized derivation; multiplicative (generalized)-derivation; GENERALIZED DERIVATIONS; PRIME;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a semiprime ring with center Z(R). A mapping F : R -> R (not necessarily additive) is said to be a multiplicative (generalized)derivation if there exists a map f : R -> R (not necessarily a derivation nor an additive map) such that F (xy) = F(x)y + xf(y) holds for all x, y is an element of R. The objective of the present paper is to study the following identities: (i) F(x) F(y) +/- [x, y] is an element of Z(R), (ii) F(x) F(y) +/- x omicron y is an element of Z(R), (iii) F([x, y]) +/- [x, y] is an element of Z(R), (iv) F(x omicron y) +/- (x omicron y) is an element of Z(R), (v) F([x, y]) +/- [F(x), y] is an element of Z(R), (vi) F(x omicron y) +/- (F(x) omicron y) is an element of Z(R), (vii) [F(x), y] +/- [G(y), x] is an element of Z(R), (viii) F([x, y]) +/- [F(x), F(y)] = 0, (ix) F(x omicron y) +/- (F(x) omicron F(y)) = 0, (x) F(xy) +/- [x, y] is an element of Z(R) and (xi) F(xy) +/- x omicron y is an element of Z(R) for all x, y in some appropriate subset of R, where G : R -> R is a multiplicative (generalized)-derivation associated with the map g : R -> R
引用
收藏
页码:1293 / 1306
页数:14
相关论文
共 17 条
  • [1] On one sided ideals of a semiprime ring with generalized derivations
    Ali, Asma
    De Filippis, Vincenzo
    Shujat, Faiza
    [J]. AEQUATIONES MATHEMATICAE, 2013, 85 (03) : 529 - 537
  • [2] Anderson F.W., 2002, LECT NONCOMMUTATIVE
  • [3] Ashraf M., 2001, East-West J. Math., V3, P87
  • [4] Ashraf M., 2005, SE ASIAN B MATH, V29, P669
  • [5] Ashraf M., 2007, SE ASIAN B MATH, V31, P415
  • [6] ON THE DISTANCE OF THE COMPOSITION OF 2 DERIVATIONS TO THE GENERALIZED DERIVATIONS
    BRESAR, M
    [J]. GLASGOW MATHEMATICAL JOURNAL, 1991, 33 : 89 - 93
  • [7] Daif M. N., 1992, Int. J. Math. Math. Sci., V15, P205, DOI 10.1155/S0161171292000255
  • [8] Daif MN, 1991, International Journal of Mathematics and Mathematical Sciences, V14, P615, DOI DOI 10.1155/S0161171291000844
  • [9] Daif MN., 1997, E W J MATH, V9, P31
  • [10] Dhara B., INT J MATH MATH SCI, V2010