Identification of key genes and pathways in diabetic nephropathy by bioinformatics analysis

被引:61
作者
Geng, Xiao-dong [1 ,2 ]
Wang, Wei-wei [3 ,4 ]
Feng, Zhe [1 ]
Liu, Ran [1 ]
Cheng, Xiao-long [1 ]
Shen, Wan-jun [1 ]
Dong, Zhe-yi [1 ]
Cai, Guang-yan [1 ]
Chen, Xiang-mei [1 ]
Hong, Quan [1 ]
Wu, Di [1 ]
机构
[1] Chinese Peoples Liberat Army Gen Hosp, Chinese PLA Med Sch, Chinese PLA Inst Nephrol, Dept Nephrol,State Key Lab Kidney Dis,Natl Clin R, Beijing, Peoples R China
[2] Beijing Mil Reg, Beidaihe Sanat, Kidney Therapeut Ctr Tradit Chinese & Western Med, Qinhuangdao, Hebei, Peoples R China
[3] Chinese Acad Med Sci, Peking Union Med Coll Hosp, Dept Thorac Surg, Beijing, Peoples R China
[4] Peking Union Med Coll, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Bioinformatics analysis; Diabetic nephropathy; Differentially expressed genes; PROTOONCOGENE ETS-1; EXPRESSION; ONTOLOGY; CELLS; BETA;
D O I
10.1111/jdi.12986
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims/Introduction The aim of the present study was to identify candidate differentially expressed genes (DEGs) and pathways using bioinformatics analysis, and to improve our understanding of the cause and potential molecular events of diabetic nephropathy. Materials and Methods Two cohort profile datasets (GSE30528 and GSE33744) were integrated and used for deep analysis. We sorted DEGs and analyzed differential pathway enrichment. DEG-associated ingenuity pathway analysis was carried out. The screened gene expression feature was verified in the db/db mouse kidney cortex. Then, rat mesangial cells cultured with high-concentration glucose were used for verification. The target genes of transcriptional factor E26 transformation-specific-1 (ETS1) were predicted with online tools and validated using chromatin immunoprecipitation assay quantitative polymerase chain reaction. Results The two GSE datasets identified 89 shared DEGs; 51 were upregulated; and 38 were downregulated. Most of the DEGs were significantly enriched in cell adhesion, the plasma membrane, the extracellular matrix and the extracellular region. Quantitative reverse transcription polymerase chain reaction analysis validated the upregulated expression of Itgb2, Cd44, Sell, Fn1, Tgfbi and Il7r, and the downregulated expression of Igfbp2 and Cd55 in the db/db mouse kidney cortex. Chromatin immunoprecipitation assay quantitative polymerase chain reaction showed that Itgb2 was the target gene of transcription factor Ets1. ETS1 knockdown in rat mesangial cells decreased integrin subunit beta 2 expression. Conclusion We found that EST1 functioned as an important transcription factor in diabetic nephropathy development through the promotion of integrin subunit beta 2 expression. EST1 might be a drug target for diabetic nephropathy treatment.
引用
收藏
页码:972 / 984
页数:13
相关论文
共 25 条
[1]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[2]   High ambient glucose levels modulates the production of MMP-9 and α5(IV) collagen by cultured podocytes [J].
Bai, YL ;
Wang, LZ ;
Li, YQ ;
Liu, SY ;
Li, JZ ;
Wang, HY ;
Huang, HC .
CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2006, 17 (1-2) :57-68
[3]   Gene Ontology Consortium: going forward [J].
Blake, J. A. ;
Christie, K. R. ;
Dolan, M. E. ;
Drabkin, H. J. ;
Hill, D. P. ;
Ni, L. ;
Sitnikov, D. ;
Burgess, S. ;
Buza, T. ;
Gresham, C. ;
McCarthy, F. ;
Pillai, L. ;
Wang, H. ;
Carbon, S. ;
Dietze, H. ;
Lewis, S. E. ;
Mungall, C. J. ;
Munoz-Torres, M. C. ;
Feuermann, M. ;
Gaudet, P. ;
Basu, S. ;
Chisholm, R. L. ;
Dodson, R. J. ;
Fey, P. ;
Mi, H. ;
Thomas, P. D. ;
Muruganujan, A. ;
Poudel, S. ;
Hu, J. C. ;
Aleksander, S. A. ;
McIntosh, B. K. ;
Renfro, D. P. ;
Siegele, D. A. ;
Attrill, H. ;
Brown, N. H. ;
Tweedie, S. ;
Lomax, J. ;
Osumi-Sutherland, D. ;
Parkinson, H. ;
Roncaglia, P. ;
Lovering, R. C. ;
Talmud, P. J. ;
Humphries, S. E. ;
Denny, P. ;
Campbell, N. H. ;
Foulger, R. E. ;
Chibucos, M. C. ;
Giglio, M. Gwinn ;
Chang, H. Y. ;
Finn, R. .
NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) :D1049-D1056
[4]   TRANSFORMING GROWTH FACTOR-B REGULATES PRODUCTION OF PROTEOGLYCANS BY MESANGIAL CELLS [J].
BORDER, WA ;
OKUDA, S ;
LANGUINO, LR ;
RUOSLAHTI, E .
KIDNEY INTERNATIONAL, 1990, 37 (02) :689-695
[5]   Abnormalities in primary granule exocytosis in neutrophils from Type I diabetic patients with nephropathy [J].
Fardon, NJM ;
Wilkinson, R ;
Thomas, TH .
CLINICAL SCIENCE, 2002, 102 (01) :69-75
[6]   Cytokine and Cytokine-Like Inflammation Markers, Endothelial Dysfunction, and Imbalanced Coagulation in Development of Diabetes and Its Complications [J].
Goldberg, Ronald B. .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2009, 94 (09) :3171-3182
[7]   Impact of genetic background on nephropathy in diabetic mice [J].
Gurley, SB ;
Clare, SE ;
Snow, KP ;
Hu, A ;
Meyer, TW ;
Coffman, TM .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2006, 290 (01) :F214-F222
[8]   Identification of Cross-Species Shared Transcriptional Networks of Diabetic Nephropathy in Human and Mouse Glomeruli [J].
Hodgin, Jeffrey B. ;
Nair, Viji ;
Zhang, Hongyu ;
Randolph, Ann ;
Harris, Raymond C. ;
Nelson, Robert G. ;
Weil, E. Jennifer ;
Cavalcoli, James D. ;
Patel, Jignesh M. ;
Brosius, Frank C., III ;
Kretzler, Matthias .
DIABETES, 2013, 62 (01) :299-308
[9]  
Lebrec Jeremie Jp, 2009, BMC Proc, V3 Suppl 7, pS94
[10]   Renal expression of proto-oncogene Ets-1 on matrix remodeling in experimental diabetic nephropathy [J].
Liu, Dian-xin ;
Liu, Xiao-min ;
Su, Ying ;
Zhang, Xiao-juan .
ACTA HISTOCHEMICA, 2011, 113 (05) :527-533