On the underlying gauge group structure of D=11 supergravity

被引:34
作者
Bandos, IA [1 ]
de Azcárraga, JA
Izquierdo, JM
Picón, M
Varela, O
机构
[1] Univ Valencia, Fac Fis, Dept Fis Teor, E-46100 Burjassot, Valencia, Spain
[2] CSIC, Ctr Mixto Univ Valencia, IFIC, E-46100 Burjassot, Valencia, Spain
[3] Univ Valladolid, Dept Fis Teor, E-47011 Valladolid, Spain
[4] Kharkov Phys & Technol Inst, Inst Theoret Phys, NSC, UA-61108 Kharkov, Ukraine
关键词
D O I
10.1016/j.physletb.2004.06.079
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The underlying gauge group structure of D = 11 supergravity is revisited. It may be described by a one-parametric family of Lie supergroups Sigma(s) circle times SO(1, 10), s not equal 0. The family of superalgebras E(s) associated to Sigma(s) is given by a family of extensions of the M-algebra {P-a, Q(a), Z(ab), Z(a1)...(a5)} by an,additional fermionic central charge Q'(alpha). The Chevalley-Eilenberg four-cocycle omega(4) similar to Pi(alpha) Lambda Pi(beta) Lambda Pi(a) Lambda Pi(b) Gamma(abalphabeta) on the standard D = 11 supersymmetry algebra may be trivialized on (s), and this implies that the three-form field A(3) of D = 11 supergravity may be expressed as a composite of the Et (s) one-form gauge fields e(a), psi(a), B-ab, B-a1...a5 and eta(alpha). Two superalgebras of E(s) recover the two earlier D'Auria and Fre decompositions of A(3). Another member of E(s) allows for a simpler composite structure for A(3) that does not involve the B-a1...a5 field. Sigma(s) is a deformation of Sigma(0), which is singularized by having an enhanced Sp(32) (rather than just SO(1, 10)) automorphism symmetry and by being an expansion of OSp(1\32). (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:145 / 155
页数:11
相关论文
共 60 条
[1]   Tensorial central charges and new superparticle models with fundamental spinor coordinates [J].
Bandos, I ;
Lukierski, J .
MODERN PHYSICS LETTERS A, 1999, 14 (19) :1257-1272
[2]   Duality-symmetric eleven-dimensional supergravity and its coupling to M-branes [J].
Bandos, I ;
Berkovits, N ;
Sorokin, D .
NUCLEAR PHYSICS B, 1998, 522 (1-2) :214-233
[3]   BPS preons, generalized holonomies, and D=11 supergravities -: art. no. 105010 [J].
Bandos, IA ;
de Azcárraga, JA ;
Izquierdo, JM ;
Picón, M ;
Varela, O .
PHYSICAL REVIEW D, 2004, 69 (10)
[4]   BPS states in M theory anal twistorial constituents [J].
Bandos, IA ;
de Azcárraga, JA ;
Izquierdo, JM ;
Lukierski, J .
PHYSICAL REVIEW LETTERS, 2001, 86 (20) :4451-4454
[5]   BPS preons and tensionless super-p-branes in generalized superspace [J].
Bandos, IA .
PHYSICS LETTERS B, 2003, 558 (3-4) :197-204
[6]   S theory [J].
Bars, I .
PHYSICAL REVIEW D, 1997, 55 (04) :2373-2381
[7]   GRAVITY WITH EXTRA GAUGE-SYMMETRY [J].
BARS, I ;
MACDOWELL, SW .
PHYSICS LETTERS B, 1983, 129 (3-4) :182-184
[8]   Lifting M-theory to two-time physics [J].
Bars, I ;
Deliduman, C ;
Minic, D .
PHYSICS LETTERS B, 1999, 457 (04) :275-284
[9]   Two-time physics in field theory [J].
Bars, I .
PHYSICAL REVIEW D, 2000, 62 (04) :1-16
[10]  
BARS I, HEPTH0106021