The Gauss-Bonnet-Chern mass under geometric flows

被引:4
作者
Ho, Pak Tung [1 ]
机构
[1] Sogang Univ, Dept Math, Seoul 121742, South Korea
基金
新加坡国家研究基金会;
关键词
YAMABE FLOW; RICCI FLOW; CONVERGENCE; MANIFOLDS;
D O I
10.1063/5.0023251
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Gauss-Bonnet-Chern mass was defined and studied by Ge, Wang, and Wu [Adv. Math. 266, 84-119 (2014)]. In this paper, we consider the evolution of Gauss-Bonnet-Chern mass along the Ricci flow and the Yamabe flow.
引用
收藏
页数:9
相关论文
共 32 条
[1]   COORDINATE INVARIANCE AND ENERGY EXPRESSIONS IN GENERAL RELATIVITY [J].
ARNOWITT, R ;
MISNER, CW ;
DESER, S .
PHYSICAL REVIEW, 1961, 122 (03) :997-&
[2]   The Ricci flow of asymptotically hyperbolic mass and applications [J].
Balehowsky, T. ;
Woolgar, E. .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (07)
[3]   ON A CONSTRUCTION OF COORDINATES AT INFINITY ON MANIFOLDS WITH FAST CURVATURE DECAY AND MAXIMAL VOLUME GROWTH [J].
BANDO, S ;
KASUE, A ;
NAKAJIMA, H .
INVENTIONES MATHEMATICAE, 1989, 97 (02) :313-349
[4]   THE MASS OF AN ASYMPTOTICALLY FLAT MANIFOLD [J].
BARTNIK, R .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (05) :661-693
[5]  
Brendle S, 2005, J DIFFER GEOM, V69, P217
[6]   Convergence of the Yamabe flow in dimension 6 and higher [J].
Brendle, Simon .
INVENTIONES MATHEMATICAE, 2007, 170 (03) :541-576
[7]   A gap theorem for complete noncompact manifolds with nonnegative Ricci curvature [J].
Chen, BL ;
Zhu, XP .
COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2002, 10 (01) :217-239
[8]   THE YAMABE FLOW ON LOCALLY CONFORMALLY FLAT MANIFOLDS WITH POSITIVE RICCI CURVATURE [J].
CHOW, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (08) :1003-1014
[9]   Mass under the Ricci flow [J].
Dai, Xianzhe ;
Ma, Li .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 274 (01) :65-80
[10]   THE GAUSS-BONNET-CHERN MASS OF HIGHER-CODIMENSION GRAPHS [J].
de Sousa, Alexandre ;
Girao, Frederico .
PACIFIC JOURNAL OF MATHEMATICS, 2019, 298 (01) :201-216