A compact difference scheme for a two dimensional fractional Klein-Gordon equation with Neumann boundary conditions

被引:79
作者
Vong, Seakweng [1 ]
Wang, Zhibo [1 ]
机构
[1] Univ Macau, Dept Math, Macau, Peoples R China
关键词
Two dimensional fractional Klein-Gordon equation; Compact difference scheme; Stability; Convergence; SUB-DIFFUSION EQUATION; VARIATIONAL ITERATION METHOD; IMPLICIT NUMERICAL-METHOD; WISE ERROR ESTIMATE; SINE-GORDON; HIGH-ORDER; SPACE; SUBDIFFUSION;
D O I
10.1016/j.jcp.2014.06.022
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, a high order finite difference scheme for a two dimensional fractional Klein-Gordon equation subject to Neumann boundary conditions is proposed. The difficulty induced by the nonlinear term and the Neumann conditions is carefully handled in the proposed scheme. The stability and convergence of the finite difference scheme are analyzed using the matrix form of the scheme. Numerical examples are provided to demonstrate the theoretical results. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:268 / 282
页数:15
相关论文
共 39 条
[21]   A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term [J].
Mohebbi, Akbar ;
Abbaszadeh, Mostafa ;
Dehghan, Mehdi .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 240 :36-48
[22]   Matrix approach to discrete fractional calculus II: Partial fractional differential equations [J].
Podlubny, Igor ;
Chechkin, Aleksei ;
Skovranek, Tomas ;
Chen, YangQuan ;
Vinagre Jara, Blas M. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (08) :3137-3153
[23]   Numerical Algorithm With High Spatial Accuracy for the Fractional Diffusion-Wave Equation With Neumann Boundary Conditions [J].
Ren, Jincheng ;
Sun, Zhi-zhong .
JOURNAL OF SCIENTIFIC COMPUTING, 2013, 56 (02) :381-408
[24]   Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions [J].
Ren, Jincheng ;
Sun, Zhi-Zhong ;
Zhao, Xuan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 232 (01) :456-467
[25]   The Sinc-Legendre collocation method for a class of fractional convection-diffusion equations with variable coefficients [J].
Saadatmandi, Abbas ;
Dehghan, Mehdi ;
Azizi, Mohammad-Reza .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (11) :4125-4136
[26]   A tau approach for solution of the space fractional diffusion equation [J].
Saadatmandi, Abbas ;
Dehghan, Mehdi .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) :1135-1142
[27]   A new operational matrix for solving fractional-order differential equations [J].
Saadatmandi, Abbas ;
Dehghan, Mehdi .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (03) :1326-1336
[28]   A spatially second-order accurate implicit numerical method for the space and time fractional Bloch-Torrey equation [J].
Song, J. ;
Yu, Q. ;
Liu, F. ;
Turner, I. .
NUMERICAL ALGORITHMS, 2014, 66 (04) :911-932
[30]   A fully discrete difference scheme for a diffusion-wave system [J].
Sun, ZZ ;
Wu, XN .
APPLIED NUMERICAL MATHEMATICS, 2006, 56 (02) :193-209