AN EXPONENTIAL TIME INTEGRATOR FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATION

被引:5
作者
Kooij, Gijs L. [1 ]
Botchev, Mike A. [2 ,3 ]
Geurts, Bernard J. [1 ,4 ]
机构
[1] Univ Twente, Fac EEMCS, Multiscale Modeling & Simulat, Enschede, Netherlands
[2] Univ Twente, Fac EEMCS, Math Computat Sci, Enschede, Netherlands
[3] Russian Acad Sci, Keldysh Inst Appl Math, Moscow, Russia
[4] Eindhoven Univ Technol, Fac Appl Phys, Fluid Dynam Lab, Eindhoven, Netherlands
基金
俄罗斯科学基金会;
关键词
exponential time integration; incompressible Navier-Stokes equation; block Krylov subspace method; parallel in time; INITIAL-VALUE PROBLEMS; RUNGE-KUTTA METHODS; NUMERICAL-SOLUTION; KRYLOV SUBSPACES; FLOW; MATRIX; PARAREAL; APPROXIMATION; SYSTEMS; IMPLEMENTATION;
D O I
10.1137/17M1121950
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an exponential time integration method for the incompressible Navier-Stokes equation. An essential step in our procedure is the treatment of the pressure by applying a divergence-free projection to the momentum equation. The differential-algebraic equation for the discrete velocity and pressure is then reduced to a conventional ordinary differential equation that can be solved with the proposed exponential integrator. A promising feature of exponential time integration is its potential time parallelism within the Paraexp algorithm. We demonstrate that our approach leads to parallel speedup assuming negligible parallel communication.
引用
收藏
页码:B684 / +
页数:23
相关论文
共 66 条
[1]  
[Anonymous], 2014, FINITE ELEMENTS FAST, DOI DOI 10.1093/ACPROF:OSO/9780199678792.003.0009
[2]  
[Anonymous], 2003, ITERATIVE METHODS SP, DOI DOI 10.1137/1.9780898718003
[3]  
Benzi M, 2005, ACTA NUMER, V14, P1, DOI 10.1017/S0962492904000212
[4]   A parallel implementation of the modified augmented Lagrangian preconditioner for the incompressible Navier-Stokes equations [J].
Benzi, Michele ;
Wang, Zhen .
NUMERICAL ALGORITHMS, 2013, 64 (01) :73-84
[5]   GENERALIZED RATIONAL KRYLOV DECOMPOSITIONS WITH AN APPLICATION TO RATIONAL APPROXIMATION [J].
Berljafa, Mario ;
Guettel, Stefan .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2015, 36 (02) :894-916
[6]   A block Krylov subspace time-exact solution method for linear ordinary differential equation systems [J].
Botchev, M. A. .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2013, 20 (04) :557-574
[7]   RESIDUAL, RESTARTING, AND RICHARDSON ITERATION FOR THE MATRIX EXPONENTIAL [J].
Botchev, Mike A. ;
Grimm, Volker ;
Hochbruck, Marlis .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (03) :A1376-A1397
[8]   Benchmark spectral results on the lid-driven cavity flow [J].
Botella, O ;
Peyret, R .
COMPUTERS & FLUIDS, 1998, 27 (04) :421-433
[9]   The 2D lid-driven cavity problem revisited [J].
Bruneau, CH ;
Saad, M .
COMPUTERS & FLUIDS, 2006, 35 (03) :326-348
[10]  
Burrage K., 1995, Parallel and Sequential Methods for Ordinary Differential Equations