The cost of using exact confidence intervals for a binomial proportion

被引:52
作者
Thulin, Mans [1 ]
机构
[1] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
关键词
Asymptotic expansion; binomial distribution; confidence interval; expected length; sample size determination; proportion; SAMPLE-SIZE; COVERAGE;
D O I
10.1214/14-EJS909
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
When computing a confidence interval for a binomial proportion p one must choose between using an exact interval, which has a coverage probability of at least 1 a for all values of p, and a shorter approximate interval, which may have lower coverage for some p but that on average has coverage equal to 1 a. We investigate the cost of using the exact one and two-sided Clopper-Pearson confidence intervals rat her than shorter approximate intervals, first in terms of increased expected length and then in terms of the increase in sample size required to obtain a desired expected length. Using asymptotic expansions, we also give a closed-form formula for determining the sample size for the exact Clopper-Pearson methods. For two-sided intervals, our investigation reveals an interesting connection between the frequentist Clopper-Pearson interval and Bayesian intervals based on noninformative priors.
引用
收藏
页码:817 / 840
页数:24
相关论文
共 33 条
[1]   Oral clofarabine for relapsed/refractory non-Hodgkin lymphomas: results of a phase 1 study [J].
Abramson, Jeremy S. ;
Takvorian, Ronald W. ;
Fisher, David C. ;
Feng, Yang ;
Jacobsen, Eric D. ;
Brown, Jennifer R. ;
Barnes, Jeffrey A. ;
Neuberg, Donna S. ;
Hochberg, Ephraim P. .
LEUKEMIA & LYMPHOMA, 2013, 54 (09) :1915-1920
[2]   Approximate is better than "exact" for interval estimation of binomial proportions [J].
Agresti, A ;
Coull, BA .
AMERICAN STATISTICIAN, 1998, 52 (02) :119-126
[3]   Confidence curves and improved exact confidence intervals for discrete distributions [J].
Blaker, H .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2000, 28 (04) :783-798
[4]   BINOMIAL CONFIDENCE-INTERVALS [J].
BLYTH, CR ;
STILL, HA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1983, 78 (381) :108-116
[5]  
Brown LD, 2002, ANN STAT, V30, P160
[6]   Interval estimation for a binomial proportion - Comment - Rejoinder [J].
Brown, LD ;
Cai, TT ;
DasGupta, A ;
Agresti, A ;
Coull, BA ;
Casella, G ;
Corcoran, C ;
Mehta, C ;
Ghosh, M ;
Santner, TJ ;
Brown, LD ;
Cai, TT ;
DasGupta, A .
STATISTICAL SCIENCE, 2001, 16 (02) :101-133
[7]   One-sided confidence intervals in discrete distributions [J].
Cai, TT .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 131 (01) :63-88
[8]   REFINING BINOMIAL CONFIDENCE-INTERVALS [J].
CASELLA, G .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1986, 14 (02) :113-129
[9]   The use of confidence or fiducial limits illustrated in the case of the binomial. [J].
Clopper, CJ ;
Pearson, ES .
BIOMETRIKA, 1934, 26 :404-413
[10]  
CRAMER H., 1946, MATH METHODS STAT