Carbon nanomembranes are synthetic two-dimen-sional sheets with nanometer thickness, macroscopic lateral dimensions, and high structural homogeneity. They have great application potential in various branches of nanotechnology. Because of their full carbon structure, it is not clear whether macromolecules like poly(methyl methacrylate) (PMMA) can be irreversibly adsorbed on their surface. Here, irreversible adsorption means that the polymer chains cannot be removed by a leaching process, which is assumed in technological transfer processes. However, if polar defects are present on the carbon nanomembranes (CNMs), it may occur that polymers can be irreversibly adsorbed. To address this question, PMMA was spin-coated on top of CNMs, annealed for a specific time at different temperatures, and then tried to be removed by a acetone treatment in a leaching approach. The samples were investigated in detail by atomic force microscopy, X-ray photoelectron spectroscopy, and broadband dielectric spectroscopy, where the latter method has been applied to CNMs for the first time. Unambiguously, it was shown that PMMA can be adsorbed on the surface of CNMs after annealing the sample above the glass -transition temperature of PMMA. The general occurrence of polar defects on the surface of CNMs and the adsorption of polymers open opportunities for advanced innovative hybrid materials combining the properties of the CNM with those of the polymer.