The Riemann-Hilbert Correspondence for Holonomic D-Modules on Curves

被引:0
作者
Sabbah, Claude
机构
来源
INTRODUCTION TO STOKES STRUCTURES | 2013年 / 2060卷
关键词
D O I
10.1007/978-3-642-31695-1_5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this chapter, we define the Riemann-Hilbert functor on a Riemann surface X as a functor from the category of holonomic D-X-modules to that of Stokes-perverse sheaves. It is induced from a functor at the derived category level which is compatible with t-structures. Given a discrete set D in X, we first define the functor from the category of D-X(*D)-modules which are holonomic and have regular singularities away from D to that of Stokes-perverse sheaves on e (X) over tilde (D), and we show that it is an equivalence. We then extend the correspondence to holonomic D-X-modules with singularities on D, on the one hand, and Stokes-perverse sheaves on e (X) over tilde (D) on the other hand.
引用
收藏
页码:65 / 78
页数:14
相关论文
empty
未找到相关数据