Ulam-Hyers stability of Caputo fractional difference equations

被引:84
作者
Chen, Churong [1 ]
Bohner, Martin [2 ]
Jia, Baoguo [1 ]
机构
[1] Sun Yat Sen Univ, Sch Math, Guangdong Prov Key Lab Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
[2] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO 65409 USA
关键词
Caputo operator; nabla difference equation; Ulam-Hyers stability; SYSTEM;
D O I
10.1002/mma.5869
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Ulam-Hyers stability of linear and nonlinear nabla fractional Caputo difference equations on finite intervals. Our main tool used is a recently established generalized Gronwall inequality, which allows us to give some Ulam-Hyers stability results of discrete fractional Caputo equations. We present two examples to illustrate our main results.
引用
收藏
页码:7461 / 7470
页数:10
相关论文
共 27 条
[1]   Theory of discrete fractional Sturm-Liouville equations and visual results [J].
Bas, Erdal ;
Ozarslan, Ramazan .
AIMS MATHEMATICS, 2019, 4 (03) :593-612
[2]  
CHEN C, J DIFFERENCE EQU APP
[3]  
Chen CS, 2018, MEDITERR J MATH, V15, DOI 10.1007/s00009-017-1048-x
[4]  
DUTTA BK, 2012, J RAJASTHAN ACAD PHY, V11, P397
[5]  
DUTTA BK, 2013, REV B CALCUTTA MATH, V21, P95
[6]  
Goodrich C. S., 2015, Discrete Fractional Calculus, DOI DOI 10.1007/978-3-319-25562-0
[7]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224
[8]   Ulam-Hyers Stability for Cauchy Fractional Differential Equation in the Unit Disk [J].
Ibrahim, Rabha W. .
ABSTRACT AND APPLIED ANALYSIS, 2012,
[9]   GENERALIZED ULAM-HYERS STABILITY FOR FRACTIONAL DIFFERENTIAL EQUATIONS [J].
Ibrahim, Rabha W. .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (05)
[10]  
Jonnalagadda J M, 2016, Int J Anal, V1, P5