Learning from Noisy Label Statistics: Detecting High Grade Prostate Cancer in Ultrasound Guided Biopsy

被引:5
作者
Azizi, Shekoofeh [1 ]
Yan, Pingkun [2 ]
Tahmasebi, Amir [3 ]
Pinto, Peter [4 ]
Wood, Bradford [4 ]
Kwak, Jin Tae [5 ]
Xu, Sheng [4 ]
Turkbey, Baris [4 ]
Choyke, Peter [4 ]
Mousavi, Parvin [6 ]
Abolmaesumi, Purang [1 ]
机构
[1] Univ British Columbia, Vancouver, BC, Canada
[2] Rensselaer Polytech Inst, Troy, NY USA
[3] Philips Res North Amer, Cambridge, MA USA
[4] NIH, Bldg 10, Bethesda, MD 20892 USA
[5] Sejong Univ, Seoul, South Korea
[6] Queens Univ, Kingston, ON, Canada
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT IV | 2018年 / 11073卷
关键词
Temporal enhanced ultrasound; Prostate cancer; Recurrent neural networks;
D O I
10.1007/978-3-030-00937-3_3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The ubiquity of noise is an important issue for building computer-aided diagnosis models for prostate cancer biopsy guidance where the histopathology data is sparse and not finely annotated. We propose a solution to alleviate this challenge as a part of Temporal Enhanced Ultrasound (TeUS)-based prostate cancer biopsy guidance method. Specifically, we embed the prior knowledge from the histopathology as the soft labels in a two-stage model, to leverage the problem of diverse label noise in the ground-truth. We then use this information to accurately detect the grade of cancer and also to estimate the length of cancer in the target. Additionally, we create a Bayesian probabilistic version of our network, which allows evaluation of model uncertainty that can lead to any possible misguidance during the biopsy procedure. In an in vivo study with 155 patients, we analyze data from 250 suspicious cancer foci obtained during fusion biopsy. We achieve the average area under the curve of 0.84 for cancer grading and mean squared error of 0.12 in the estimation of tumor in biopsy core length.
引用
收藏
页码:21 / 29
页数:9
相关论文
共 15 条
[1]   Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study [J].
Ahmed, Hashim U. ;
Bosaily, Ahmed El-Shater ;
Brown, Louise C. ;
Gabe, Rhian ;
Kaplan, Richard ;
Parmar, Mahesh K. ;
Collaco-Moraes, Yolanda ;
Ward, Katie ;
Hindley, Richard G. ;
Freeman, Alex ;
Kirkham, Alex P. ;
Oldroyd, Robert ;
Parker, Chris ;
Emberton, Mark .
LANCET, 2017, 389 (10071) :815-822
[2]  
Azizi Shekoofeh, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9900, P653, DOI 10.1007/978-3-319-46720-7_76
[3]   Detection and grading of prostate cancer using temporal enhanced ultrasound: combining deep neural networks and tissue mimicking simulations [J].
Azizi, Shekoofeh ;
Bayat, Sharareh ;
Yan, Pingkun ;
Tahmasebi, Amir ;
Nir, Guy ;
Kwak, Jin Tae ;
Xu, Sheng ;
Wilson, Storey ;
Iczkowski, Kenneth A. ;
Lucia, M. Scott ;
Goldenberg, Larry ;
Salcudean, Septimiu E. ;
Pinto, Peter A. ;
Wood, Bradford ;
Abolmaesumi, Purang ;
Mousavi, Parvin .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2017, 12 (08) :1293-1305
[4]   Detection of prostate cancer using temporal sequences of ultrasound data: a large clinical feasibility study [J].
Azizi, Shekoofeh ;
Imani, Farhad ;
Ghavidel, Sahar ;
Tahmasebi, Amir ;
Kwak, Jin Tae ;
Xu, Sheng ;
Turkbey, Baris ;
Choyke, Peter ;
Pinto, Peter ;
Wood, Bradford ;
Mousavi, Parvin ;
Abolmaesumi, Purang .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2016, 11 (06) :947-956
[5]   Ultrasound-Based Detection of Prostate Cancer Using Automatic Feature Selection with Deep Belief Networks [J].
Azizi, Shekoofeh ;
Imani, Farhad ;
Zhuang, Bo ;
Tahmasebi, Amir ;
Kwak, Jin Tae ;
Xu, Sheng ;
Uniyal, Nishant ;
Turkbey, Baris ;
Choyke, Peter ;
Pinto, Peter ;
Wood, Bradford ;
Moradi, Mehdi ;
Mousavi, Parvin ;
Abolmaesumi, Purang .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2015, PT II, 2015, 9350 :70-77
[6]  
Bayat S., 2017, IEEE T UFFC, V65, P400
[7]   Recent advances in ultrasonic tissue-type imaging of the prostate [J].
Feleppa, E. J. ;
Porter, C. R. ;
Ketterling, J. A. ;
Dasgupta, S. ;
Ramachandran, S. ;
Sparks, D. .
ACOUSTICAL IMAGING, VOL 28, 2007, 28 :331-339
[8]   Classification in the Presence of Label Noise: a Survey [J].
Frenay, Benoit ;
Verleysen, Michel .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (05) :845-869
[9]  
Gal Y, 2016, PR MACH LEARN RES, V48
[10]  
Kasivisvanathan V., 2018, European Urology Supplements, V17, pe1716