Full-Spectrum Absorption Enhancement in a-Si:H Thin-Film Solar Cell with a Composite Light-Trapping Structure

被引:26
|
作者
Li, Hongen [1 ]
Hu, Yizhi [1 ]
Wang, Hao [2 ]
Tao, Qi [1 ]
Zhu, Yonggang [3 ]
Yang, Yue [3 ]
机构
[1] Harbin Inst Technol, Sch Sci, Shenzhen 518055, Peoples R China
[2] Vivo Commun Technol Co Ltd, Shenzhen 518000, Peoples R China
[3] Harbin Inst Technol, Sch Mech Engn & Automat, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
antireflection coatings; full-spectrum absorption enhancement; hydrogenated amorphous silicon; light-trapping structures; nanoparticles; thin-film solar cells; SILICON; DESIGN; NANOSTRUCTURES; PERFORMANCE; EFFICIENCY; COATINGS; LIMIT;
D O I
10.1002/solr.202000524
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Thin-film solar cells are favorable because of the reduced material and fabrication cost as well as the advantage of mechanical flexibility. However, due to the reduced thickness of the active layer, the light absorption is also decreased. Herein, a composite light-trapping structure with a double-layer antireflection coating on the upper surface and Ag hemispheres on the substrate is proposed to achieve full-spectrum (350-800 nm) absorption enhancement. The results simulated by the finite-difference-time-domain method show that compared with 100-nm-thick bare a-Si:H solar cell, the short-circuit current density (J(sc)) and photoelectric conversion efficiency are respectively improved by 39% and 38% through adding the optimized composite light-trapping structure. Excitingly, the light-trapping effects remain efficient over different thicknesses of the active layer, and the J(sc) of a 400-nm-thick a-Si:H thin-film solar cell can be enhanced to approach the theoretical limit. The light-trapping method proposed in this study can provide general and valuable guidance for improving the light absorption in various thin-film solar cells.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Broadband light absorption enhancement in a-Si:H ultrathin film solar cells with nanophotonic light trapping structures
    Ben Afkir, N.
    Er-rafyg, A.
    Sekkat, Z.
    MATERIALS TODAY COMMUNICATIONS, 2024, 40
  • [2] Enhancement in the Performance of a-Si:H Thin-Film Solar Cells by Light Trapping from Plasmonic Back Reflector
    Gangwar, Manvendra Singh
    Agarwal, Pratima
    PLASMONICS, 2024, 19 (05) : 2595 - 2604
  • [3] Theoretical investigation of broadband absorption enhancement in a-Si thin-film solar cell with nanoparticles
    Li, Hongen
    Hu, Yizhi
    Yang, Yue
    Zhu, Yonggang
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 211
  • [4] A blazed grating for light trapping in a-Si thin-film solar cells
    Ji, L.
    Varadan, V. V.
    JOURNAL OF OPTICS, 2012, 14 (09)
  • [5] A highly efficient light-trapping structure for thin-film silicon solar cells
    Zhao, L.
    Zuo, Y. H.
    Zhou, C. L.
    Li, H. L.
    Diao, H. W.
    Wang, W. J.
    SOLAR ENERGY, 2010, 84 (01) : 110 - 115
  • [6] Plasmonic metal nanocubes for broadband light absorption enhancement in thin-film a-Si solar cells
    Veenkamp, R. J.
    Ye, W. N.
    JOURNAL OF APPLIED PHYSICS, 2014, 115 (12)
  • [7] Light trapping in a-Si: H thin film solar cells using silver nanostructures
    Wang, P. H.
    Theuring, M.
    Vehse, M.
    Steenhoff, V.
    Agert, C.
    Brolo, A. G.
    AIP ADVANCES, 2017, 7 (01)
  • [8] Advanced light trapping interface for a-Si:H thin film
    Nasser, Hisham
    Saleh, Zaki M.
    Ozkol, Engin
    Bek, Alpan
    Turan, Rasit
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 12, NO 9-11, 2015, 12 (9-11): : 1206 - 1210
  • [9] Advanced light-trapping effect of thin-film solar cell with dual photonic crystals
    Zhang, Anjun
    Guo, Zhongyi
    Tao, Yifei
    Wang, Wei
    Mao, Xiaoqin
    Fan, Guanghua
    Zhou, Keya
    Qu, Shiliang
    NANOSCALE RESEARCH LETTERS, 2015, 10 : 1 - 10
  • [10] Advanced light-trapping effect of thin-film solar cell with dual photonic crystals
    Anjun Zhang
    Zhongyi Guo
    Yifei Tao
    Wei Wang
    Xiaoqin Mao
    Guanghua Fan
    Keya Zhou
    Shiliang Qu
    Nanoscale Research Letters, 2015, 10