Electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on supported Au and Pd bimetallic nanoparticles

被引:261
|
作者
Chadderdon, David J. [1 ]
Xin, Le [1 ]
Qi, Ji [1 ]
Qiu, Yang [1 ]
Krishna, Phani [1 ]
More, Karren L. [2 ]
Li, Wenzhen [1 ]
机构
[1] Michigan Technol Univ, Dept Chem Engn, Houghton, MI 49931 USA
[2] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA
基金
美国国家科学基金会;
关键词
MEMBRANE FUEL-CELLS; SOLVENT-FREE OXIDATION; SELECTIVE OXIDATION; AEROBIC OXIDATION; PHASE OXIDATION; ANODE CATALYSTS; GLYCEROL; BIOMASS; GOLD; CHEMICALS;
D O I
10.1039/c4gc00401a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This work explores the potential-dependent electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF) in alkaline media over supported Au and Pd nanoparticies and demonstrates the synergistic effects of bimetallic Pd-Au catalysts for the selective formation of 2,5-furandicarboxylic acid (FDCA). Results from electrolysis product analysis at various electrode potentials, along with cyclic voltammetry of HMF and its oxidation intermediates, revealed the unique catalytic properties of Pd and Au for competitive oxidation of alcohol and aldehyde side-groups present in HMF. Aldehyde oxidation was greatly favored over alcohol oxidation on the Au/C catalyst, which was very active for HMF oxidation to 5-hydroxymethy1-2-furancarboxylic acid (HFCA), however high electrode potentials were required for further oxidation of the alcohol group to FDCA. HMF oxidation on Pd/C followed two competitive routes to FDCA and the pathway was dependent on the electrode potential. Oxidation of aldehyde groups occurred much slower on Pd/C than on Au/C at low potentials, but was greatly enhanced at increased potentials or by alloying with Au. It was found that Pd-Au bimetallic catalysts achieved deeply oxidized products (FFCA and FDCA) at lower potentials than monometallic catalysts and the product distribution was dependent on the electrode potential and surface alloy composition. Bimetallic catalysts with 2 :1 and 1: 2 Pd-Au molar ratios (Pd2Au1/C and Pd1Au2/C) exhibited advantages of both single components with facile alcohol and aldehyde group oxidation, resulting in greatly improved HMF conversion rate and selectivity to fully oxidized FDCA.
引用
收藏
页码:3778 / 3786
页数:9
相关论文
共 50 条
  • [1] On the mechanism of selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over supported Pt and Au catalysts
    Davis, Sara E.
    Zope, Bhushan N.
    Davis, Robert J.
    GREEN CHEMISTRY, 2012, 14 (01) : 143 - 147
  • [2] Recent Advances in Electrocatalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid by Heterogeneous Catalysts
    Ma, Zhiming
    Wang, Lei
    Li, Guangyu
    Song, Tao
    CATALYSTS, 2024, 14 (02)
  • [3] Sulfidation of nickel foam with enhanced electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid
    Wang, Wei
    Kong, Fanhao
    Zhang, Zhe
    Yang, Lan
    Wang, Min
    DALTON TRANSACTIONS, 2021, 50 (31) : 10922 - 10927
  • [4] Effect of Ag Addition to Au Catalysts for the Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    de Boed, Ewoud J. J.
    Nolten, Hidde L.
    Masoud, Nazila
    Vogel, Robin
    Wang, Fei
    Xu, Zhuoran
    Doskocil, Eric J.
    Donoeva, Baira
    de Jongh, Petra E.
    CHEMCATCHEM, 2024, 16 (12)
  • [5] Electrocatalytic Oxidation of 5-Hydroxymethylfurfural into the Monomer 2,5-Furandicarboxylic Acid using Mesostructured Nickel Oxide
    Holzhaeuser, Fabian Joschka
    Janke, Tobias
    Oeztas, Fatma
    Broicher, Cornelia
    Palkovits, Regina
    ADVANCED SUSTAINABLE SYSTEMS, 2020, 4 (10)
  • [6] Recent advances in electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid: Mechanism, catalyst, coupling system
    Lin, Zhenzhen
    Chen, Xianlei
    Lu, Lu
    Yao, Xin
    Zhai, Chunyang
    Tao, Hengcong
    NANOTECHNOLOGY REVIEWS, 2023, 12 (01)
  • [7] Continuous Flow Synthesis of Bimetallic AuPd Catalysts for the Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Cattaneo, Stefano
    Bonincontro, Danilo
    Bere, Takudzwa
    Kiely, Christopher J.
    Hutchings, Graham J.
    Dimitratos, Nikolaos
    Albonetti, Stefania
    CHEMNANOMAT, 2020, 6 (03) : 420 - 426
  • [8] Kinetic Modeling of Homogenous Catalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Wei, Zange
    Li, Wenhao
    Yuan, Fang
    Sun, Weizhen
    Zhao, Ling
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (50) : 18352 - 18361
  • [9] 5-Hydroxymethylfurfural Oxidation Over Platinum Supported on Acai Seed Coal for Synthesis of 2,5-Furandicarboxylic Acid
    de Assumpcao, Samira M. N.
    Lima, Sirlene B.
    Silva, Jordan G. A. B.
    Santos, Ronaldo C.
    Campos, Leila M. A.
    Ferreira, Jose M., Jr.
    Trindade, Gustavo F.
    Baker, Mark A.
    Pontes, Luiz A. M.
    BIOINTERFACE RESEARCH IN APPLIED CHEMISTRY, 2022, 12 (05): : 6632 - 6650
  • [10] Enhanced Basicity of MnOx-Supported Ru for the Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Pal, Priyanka
    Saravanamurugan, Shunmugavel
    CHEMSUSCHEM, 2022, 15 (17)