A texture component crystal plasticity finite element method for scalable large strain anisotropy simulations

被引:7
作者
Raabe, D
Helming, K
Roters, F
Zhao, Z
Hirsch, J
机构
[1] Max Planck Inst Eisenforsch GmbH, Abt Mikrostructurphys & Umformtechn, DE-40237 Dusseldorf, Germany
[2] Tech Univ Clausthal, Inst Phys, DE-38678 Clausthal Zellerfeld, Germany
[3] VAW AG, Forsch & Entwicklung, DE-53014 Bonn, Germany
来源
TEXTURES OF MATERIALS, PTS 1 AND 2 | 2002年 / 408-4卷
关键词
aluminium; anisotropy; crystal plasticity; finite element simulation; metal forming; micromechanics; polycrystal; single crystal; slip systems; texture; texture change; yield surfaces;
D O I
10.4028/www.scientific.net/MSF.408-412.257
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We introduce a crystal plasticity finite element method which includes and updates the texture of polycrystalline matter for physically based simulations of large strain forming operations. The approach works by directly mapping a set of discrete texture components into a crystal plasticity finite element method. The method is well suited for industrial applications since it is formulated on the basis of existing commercial software solutions. The study gives an overview of the new texture component crystal plasticity finite element method and presents examples.
引用
收藏
页码:257 / 262
页数:6
相关论文
共 50 条
  • [21] Quantitative analysis of upset texture by crystal plasticity: finite element analysis
    Lee, M. G.
    [J]. INTERNATIONAL JOURNAL OF MATERIALS & PRODUCT TECHNOLOGY, 2008, 33 (04) : 361 - 375
  • [22] A method of coupling discrete dislocation plasticity to the crystal plasticity finite element method
    Xu, Y.
    Balint, D. S.
    Dini, D.
    [J]. MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2016, 24 (04)
  • [23] Crystal plasticity finite element method modelling of indentation size effect
    Liu, Mao
    Lu, Cheng
    Tieu, Anh Kiet
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2015, 54 : 42 - 49
  • [24] Prediction of texture evolution under varying deformation states through crystal plasticity finite element method
    Li Hong-wei
    Yang He
    [J]. TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2012, 22 : S222 - S231
  • [25] Multi-scale crystal plasticity finite element method (CPFEM) simulations for shear band development in aluminum alloys
    Wu, Yurui
    Shen, Yao
    Chen, Kaiguo
    Yu, Yuying
    He, Guo
    Wu, Peidong
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 711 : 495 - 505
  • [26] A crystal-plasticity finite element method study on effect of abnormally large grain on mesoscopic plasticity of polycrystal
    Choi, Yoon Suk
    Parthasarathy, Triplicane A.
    [J]. SCRIPTA MATERIALIA, 2012, 66 (01) : 56 - 59
  • [27] Assessment of crystal plasticity finite element simulations of the hot deformation of metals from local strain and orientation measurements
    Pinna, C.
    Lan, Y.
    Kiu, M. F.
    Efthymiadis, P.
    Lopez-Pedrosa, M.
    Farrugia, D.
    [J]. INTERNATIONAL JOURNAL OF PLASTICITY, 2015, 73 : 24 - 38
  • [28] Comparison of anisotropy evolution in BCC and FCC metals using crystal plasticity and texture analysis
    Kweon, S.
    Raja, D. S.
    [J]. EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2017, 62 : 22 - 38
  • [29] Crystal plasticity finite element simulations of pure bending of aluminium alloy AA7108
    Saai, A.
    Westermann, I.
    Dumoulin, S.
    Hopperstad, O. S.
    [J]. INTERNATIONAL JOURNAL OF MATERIAL FORMING, 2016, 9 (04) : 457 - 469
  • [30] Developing anisotropic yield models of polycrystalline tantalum using crystal plasticity finite element simulations
    Lim, Hojun
    Bong, Hyuk Jong
    Chen, Shuh Rong
    Rodgers, Theron M.
    Battaile, Corbett C.
    Lane, J. Matthew D.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 730 : 50 - 56