Comparison of Machine Learning Methods in Stochastic Skin Optical Model Inversion

被引:9
|
作者
Annala, Leevi [1 ]
Ayramo, Sami [1 ]
Polonen, Ilkka [1 ]
机构
[1] Univ Jyvaskyla, Fac Informat Technol, PL35, Jyvaskyla 40014, Finland
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 20期
基金
芬兰科学院;
关键词
skin; physical parameter retrieval; neural networks; convolutional neural network; machine learning; model inversion; NEURAL-NETWORKS; TUTORIAL;
D O I
10.3390/app10207097
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Featured Application This research can potentially be applied in improving the accuracy of clinical skin cancer diagnostics. In this study, we compare six different machine learning methods in the inversion of a stochastic model for light propagation in layered media, and use the inverse models to estimate four parameters of the skin from the simulated data: melanin concentration, hemoglobin volume fraction, and thicknesses of epidermis and dermis. The aim of this study is to determine the best methods for stochastic model inversion in order to improve current methods in skin related cancer diagnostics and in the future develop a non-invasive way to measure the physical parameters of the skin based partially on the results of the study. Of the compared methods, which are convolutional neural network, multi-layer perceptron, lasso, stochastic gradient descent, and linear support vector machine regressors, we find the convolutional neural network to be the most accurate in the inversion task.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [21] Comparison of three recent discrete stochastic inversion methods and influence of the prior choice
    Juda, Przemyslaw
    Straubhaar, Julien
    Renard, Philippe
    COMPTES RENDUS GEOSCIENCE, 2023, 355 : 19 - 44
  • [22] Machine Learning Methods in Skin Disease Recognition: A Systematic Review
    Sun, Jie
    Yao, Kai
    Huang, Guangyao
    Zhang, Chengrui
    Leach, Mark
    Huang, Kaizhu
    Yang, Xi
    PROCESSES, 2023, 11 (04)
  • [23] Comparison of machine learning methods for intelligent tutoring systems
    Hamalainen, Wilhelmiina
    Vinni, Mikko
    INTELLIGENT TUTORING SYSTEMS, PROCEEDINGS, 2006, 4053 : 525 - 534
  • [24] A comparison of imputation methods using machine learning models
    Suh, Heajung
    Song, Jongwoo
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2023, 30 (03) : 331 - 341
  • [25] A comparison of machine learning methods for ozone pollution prediction
    Pan, Qilong
    Harrou, Fouzi
    Sun, Ying
    JOURNAL OF BIG DATA, 2023, 10 (01)
  • [26] Comparison of Different Machine Learning Methods on Wisconsin Dataset
    Ivancakova, Juliana
    Babic, Frantisek
    Butka, Peter
    2018 IEEE 16TH WORLD SYMPOSIUM ON APPLIED MACHINE INTELLIGENCE AND INFORMATICS (SAMI 2018): DEDICATED TO THE MEMORY OF PIONEER OF ROBOTICS ANTAL (TONY) K. BEJCZY, 2018, : 173 - 177
  • [27] Comparison of Machine Learning Methods to Automatically Classify Keratoconus
    Hidalgo, Irene Ruiz
    Rodriguez Perez, Pablo
    Rozema, Jos J.
    Tassignon, Marie-Jose B. R.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2014, 55 (13)
  • [28] A Comparison of Machine Learning Methods for the Prediction of Breast Cancer
    Silva, Sara
    Anunciacao, Orlando
    Lotz, Marco
    EVOLUTIONARY COMPUTATION, MACHINE LEARNING AND DATA MINING IN BIOINFORMATICS, 2011, 6623 : 159 - +
  • [29] Comparison of Machine Learning Methods for the Sequence Labelling Applications
    Amasyali, Mehmet Fatih
    Bilgin, Metin
    2015 23RD SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2015, : 503 - 506
  • [30] Comparison of Machine Learning Methods for the Arterial Hypertension Diagnostics
    Kublanov, Vladimir S.
    Dolganov, Anton Yu.
    Belo, David
    Gamboa, Hugo
    APPLIED BIONICS AND BIOMECHANICS, 2017, 2017