Hypergeometric Solutions of First-Order Linear Difference Systems with Rational-Function Coefficients

被引:7
作者
Abramov, S. A. [1 ]
Petkovsek, M. [2 ]
Ryabenko, A. A. [1 ]
机构
[1] Russian Acad Sci, Ctr Comp, Moscow 119991, Russia
[2] Univ Ljubljana, Fac Math & Phys, SI-1000 Ljubljana, Slovenia
来源
COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING (CASC 2015) | 2015年 / 9301卷
关键词
RECURRENCE EQUATIONS; DENOMINATORS; ORDER;
D O I
10.1007/978-3-319-24021-3_1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Algorithms for finding hypergeometric solutions of scalar linear difference equations with rational-function coefficients are known in computer algebra. We propose an algorithm for the case of a first-order system of such equations. The algorithm is based on the resolving procedure which is proposed as a suitable auxiliary tool, and on the search for hypergeometric solutions of scalar equations as well as on the search for rational solutions of systems with rational-function coefficients. We report some experiments with our implementation of the algorithm.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 21 条
[1]   Denominators of Rational Solutions of Linear Difference Systems of an Arbitrary Order [J].
Abramov, S. A. ;
Khmelnov, D. E. .
PROGRAMMING AND COMPUTER SOFTWARE, 2012, 38 (02) :84-91
[2]   Rational solutions of linear difference equations: Universal denominators and denominator bounds [J].
Abramov, S. A. ;
Gheffar, A. ;
Khmelnov, D. E. .
PROGRAMMING AND COMPUTER SOFTWARE, 2011, 37 (02) :78-86
[3]  
Abramov SA, 2010, LECT NOTES COMPUT SC, V6244, P4, DOI 10.1007/978-3-642-15274-0_2
[4]  
Abramov S. A., 2001, ISSAC 2001. Proceedings of the 2001 International Symposium on Symbolic and Algebraic Computation, P1, DOI 10.1145/384101.384102
[5]  
Abramov S. A., 1998, ISSAC 98. Proceedings of the 1998 International Symposium on Symbolic and Algebraic Computation, P124, DOI 10.1145/281508.281593
[6]   Rational normal forms and minimal decompositions of hypergeometric terms [J].
Abramov, SA ;
Petkovsek, M .
JOURNAL OF SYMBOLIC COMPUTATION, 2002, 33 (05) :521-543
[7]   EG-eliminations [J].
Abramov, SA .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 1999, 5 (4-5) :393-433
[8]  
Barkatou M., 1997, FAST ALGORITHM COMPU
[9]  
Barkatou M. A., HYPERGEOMETRIC SOLUT
[10]  
Barkatou MA, 1999, ISSAC 99: PROCEEDINGS OF THE 1999 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, P277, DOI 10.1145/309831.309956