Ingestion of resistant starch by mice markedly increases microbiome-derived metabolites

被引:52
作者
Koay, Yen Chin [1 ,2 ,4 ]
Wali, Jibran A. [1 ,3 ]
Luk, Alison W. S. [1 ,3 ]
Macia, Laurence [1 ,4 ]
Cogger, Victoria C. [1 ,4 ,5 ,6 ]
Pulpitel, Tamara J. [1 ,3 ]
Wahl, Devin [1 ,4 ]
Solon-Biet, Samantha M. [1 ,3 ]
Holmes, Andrew [1 ,3 ]
Simpson, Stephen J. [1 ,3 ]
O'Sullivan, John F. [1 ,2 ,4 ,7 ]
机构
[1] Univ Sydney, Sydney Med Sch, Charles Perkins Ctr, Sydney, NSW, Australia
[2] Univ Sydney, Sydney Med Sch, Heart Res Inst, Sydney, NSW, Australia
[3] Univ Sydney, Sydney Med Sch, Fac Sci, Sch Life & Environm Sci, Sydney, NSW, Australia
[4] Univ Sydney, Sydney Med Sch, Fac Med, Sydney, NSW, Australia
[5] Concord Hosp, Ageing & Alzheimers Inst, Concord, NSW, Australia
[6] Concord Hosp, Ctr Educ & Res Ageing, Concord, NSW, Australia
[7] Royal Prince Alfred Hosp, Dept Cardiol, Camperdown, NSW, Australia
基金
英国医学研究理事会;
关键词
microbiome-accessible carbohydrate; plasma; metabolomics; gut microbiome; CHAIN FATTY-ACIDS; GUT MICROBIOTA; INSULIN SENSITIVITY; ENERGY-METABOLISM; OXIDATIVE STRESS; DIETARY FIBER; LIVER-DISEASE; HEALTH; GLUTATHIONE; TOLERANCE;
D O I
10.1096/fj.201900177R
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent research has shown significant health benefits deriving from high-dietary fiber or microbiome-accessible carbohydrate consumption. Compared with native starch (NS), dietary resistant starch (RS) is a high microbiome-accessible carbohydrate that significantly alters the gut microbiome. The aim of this study was to determine the systemic metabolic effects of high microbiome-accessible carbohydrate. Male C57BL/6 mice were divided into 2 groups and fed either NS or RS for 18 wk (n = 20/group). Metabolomic analyses revealed that plasma levels of numerous metabolites were significantly different between the RS-fed and NS-fed mice, many of which are microbiome-derived. Most strikingly, we observed a 22-fold increase in gut microbiome-derived tryptophan metabolite indole-3-propionate (IPA), which was positively correlated with several gut microbiota, including Allobaculum, Bifidobacterium, and Lachnospiraceae, with Allobaculum having the most consistently increased abundance of all the IPA-associated taxa across all RS-fed mice. In addition, major changes were observed for metabolites solely or primarily metabolized in the gut (e.g., trimethylamine-N-oxide), metabolites that have a significant entero-hepatic circulation (i.e., bile acids), lipid metabolites (e.g., cholesterol sulfate), metabolites indicating increased energy turnover (e.g., tricarboxylic acid cycle intermediates and ketone bodies), and increased antioxidants such as reduced glutathione. Our findings reveal potentially novel mediators of high microbiome-accessible carbohydrate-derived health benefits.-Koay,Y. C., Wali. J. A., Luk, A. W. S., Macia, L., Cogger, V. C., Pulpitel, T. J., Wahl, D., Solon-Biet, S. M., Holmes, A., Simpson, S. J., O'Sullivan, J. F. Ingestion of resistant starch by mice markedly increases microbiome-derived metabolites.
引用
收藏
页码:8033 / 8042
页数:10
相关论文
共 80 条
[1]  
[Anonymous], 2018, compositions: Compositional Data Analysis
[2]  
Barton S, 2015, FOOD FUNCT, V6, P2949, DOI [10.1039/c5fo00287g, 10.1039/C5FO00287G]
[3]   Diets high in resistant starch increase plasma levels of trimethylamine-N-oxide, a gut microbiome metabolite associated with CVD risk [J].
Bergeron, Nathalie ;
Williams, Paul T. ;
Lamendella, Regina ;
Faghihnia, Nastaran ;
Grube, Alyssa ;
Li, Xinmin ;
Wang, Zeneng ;
Knight, Rob ;
Jansson, Janet K. ;
Hazen, Stanley L. ;
Krauss, Ronald M. .
BRITISH JOURNAL OF NUTRITION, 2016, 116 (12) :2020-2029
[4]  
BEUTLER E, 1985, J LAB CLIN MED, V105, P581
[5]   Resistant starches for the management of metabolic diseases [J].
Bindels, Laure B. ;
Walter, Jens ;
Ramer-Tait, Amanda E. .
CURRENT OPINION IN CLINICAL NUTRITION AND METABOLIC CARE, 2015, 18 (06) :559-565
[6]   G protein-coupled receptors for energy metabolites as new therapeutic targets [J].
Blad, Clara C. ;
Tang, Cong ;
Offermanns, Stefan .
NATURE REVIEWS DRUG DISCOVERY, 2012, 11 (08) :603-619
[7]   Role of gut microbiota and oxidative stress in the progression of non-alcoholic fatty liver disease to hepatocarcinoma: Current and innovative therapeutic approaches [J].
Borrelli, Antonella ;
Bonelli, Patrizia ;
Tuccillo, Franca Maria ;
Goldfine, Ira D. ;
Evans, Joseph L. ;
Buonaguro, Franco Maria ;
Mancini, Aldo .
REDOX BIOLOGY, 2018, 15 :467-479
[8]   TRANSPORT AND METABOLIC PROCESSES IN SMALL-INTESTINE [J].
BROWNE, JL ;
SANFORD, PA ;
SMYTH, DH .
PROCEEDINGS OF THE ROYAL SOCIETY SERIES B-BIOLOGICAL SCIENCES, 1977, 195 (1119) :307-321
[9]   TRANSFER AND METABOLISM OF CITRATE, SUCCINATE, ALPHA-KETOGLUTARATE AND PYRUVATE BY HAMSTER SMALL-INTESTINE [J].
BROWNE, JL ;
SANFORD, PA ;
SMYTH, DH .
PROCEEDINGS OF THE ROYAL SOCIETY SERIES B-BIOLOGICAL SCIENCES, 1978, 200 (1139) :117-135
[10]   Oxidative stress, glutathione status, sirtuin and cellular stress response in type 2 diabetes [J].
Calabrese, V. ;
Cornelius, C. ;
Leso, V. ;
Trovato-Salinaro, A. ;
Ventimiglia, B. ;
Cavallaro, M. ;
Scuto, M. ;
Rizza, S. ;
Zanoli, L. ;
Neri, S. ;
Castellino, P. .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2012, 1822 (05) :729-736