EXTREME VALUES FOR TWO-DIMENSIONAL DISCRETE GAUSSIAN FREE FIELD

被引:28
作者
Ding, Jian
Zeitouni, Ofer
机构
[1] Stanford Univ, Stanford, CA 94305 USA
[2] MSRI, Berkeley, CA USA
[3] Univ Minnesota, Minneapolis, MN 55455 USA
[4] Weizmann Inst Sci, Dept Math, IL-76100 Rehovot, Israel
基金
以色列科学基金会; 美国国家科学基金会;
关键词
Discrete Gaussian free fields; extreme values; right tails; COVER TIMES; BROWNIAN-MOTION; EQUATION; MAXIMUM; GRAPHS;
D O I
10.1214/13-AOP859
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider in this paper the collection of near maxima of the discrete, two dimensional Gaussian free field in a box with Dirichlet boundary conditions. We provide a rough description of the geometry of the set of near maxima, estimates on the gap between the two largest maxima, and an estimate for the right tail up to a multiplicative constant on the law of the centered maximum.
引用
收藏
页码:1480 / 1515
页数:36
相关论文
共 38 条
[1]  
Addario-Berry L., 2008, PREPRINT
[2]   MINIMA IN BRANCHING RANDOM WALKS [J].
Addario-Berry, Louigi ;
Reed, Bruce .
ANNALS OF PROBABILITY, 2009, 37 (03) :1044-1079
[3]   Branching Brownian motion seen from its tip [J].
Aidekon, E. ;
Berestycki, J. ;
Brunet, E. ;
Shi, Z. .
PROBABILITY THEORY AND RELATED FIELDS, 2013, 157 (1-2) :405-451
[4]   CONVERGENCE IN LAW OF THE MINIMUM OF A BRANCHING RANDOM WALK [J].
Aidekon, Elie .
ANNALS OF PROBABILITY, 2013, 41 (3A) :1362-1426
[5]   LARGEST RANDOM COMPONENT OF A K-CUBE [J].
AJTAI, M ;
KOMLOS, J ;
SZEMEREDI, E .
COMBINATORICA, 1982, 2 (01) :1-7
[6]   Percolation on finite graphs and isoperimetric inequalities [J].
Alon, N ;
Benjamini, I ;
Stacey, A .
ANNALS OF PROBABILITY, 2004, 32 (3A) :1727-1745
[7]  
[Anonymous], 1937, B MOSCOW U MATH MECH
[8]  
[Anonymous], CRITICAL GAUSSIAN MU
[9]  
[Anonymous], 2011, ELECTRON COMMUN PROB, DOI DOI 10.1214/ECP.V16-1610
[10]  
[Anonymous], 1997, CAMBRIDGE TRACTS MAT