Automatic estimation of 3D transformations using skeletons for object alignment

被引:0
|
作者
Wang, Tao [1 ]
Basu, Anup [1 ]
机构
[1] Univ Alberta, Dept Comp Sci, Edmonton, AB T6G 2E8, Canada
来源
18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 1, PROCEEDINGS | 2006年
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An algorithm for automatic estimation of 3D transformations between two objects is presented in this paper. Skeletons of the 3D objects are created using a fully parallel thinning technique, feature point pairs (land markers) are automatically extracted from skeletons, and a least squares method is applied to solve an over determined linear system to estimate the 3D transformation matrix. Experiments show that this method is quite accurate when the translations and rotation angles are small, even when there is some noise in the data. The estimation process requires about 2 seconds on an Intel Centrino Laptop with 512 MB memory, for a complex model with about 37,000 object points and 500 object points for its skeletons.
引用
收藏
页码:51 / +
页数:2
相关论文
共 50 条
  • [41] Multimodal Transformer for Automatic 3D Annotation and Object Detection
    Liu, Chang
    Qian, Xiaoyan
    Huang, Binxiao
    Qi, Xiaojuan
    Lam, Edmund
    Tan, Siew-Chong
    Wong, Ngai
    COMPUTER VISION, ECCV 2022, PT XXXVIII, 2022, 13698 : 657 - 673
  • [42] Automatic generation of prototypes in 3D structural object recognition
    Jia, J
    Abe, K
    FOURTEENTH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1 AND 2, 1998, : 697 - 700
  • [43] Pose-RCNN: Joint Object Detection and Pose Estimation Using 3D Object Proposals
    Braun, Markus
    Rao, Qing
    Wang, Yikang
    Flohr, Fabian
    2016 IEEE 19TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2016, : 1546 - 1551
  • [44] ROBUST AUTOMATIC OBJECT SEGMENTATION METHOD FOR 3D PRINTING
    Huang, Tzu-Kuei
    Wang, Ying-Hsuang
    Lin, Ta-Kai
    Chuang, Yung-Yu
    2016 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO (ICME), 2016,
  • [45] Automatic procedural model generation for 3D object variation
    Getto, Roman
    Kuijper, Arjan
    Fellner, Dieter W.
    VISUAL COMPUTER, 2020, 36 (01) : 53 - 70
  • [46] Automatic localization of curvilinear object in 3D ultrasound images
    Barva, M
    Kybic, J
    Mari, JB
    Cachard, CB
    Hlavác, V
    MEDICAL IMAGING 2005: ULTRASONIC IMAGING AND SIGNAL PROCESSING, 2005, 5750 : 455 - 462
  • [47] 3D object watermarking by a 3D hidden object
    Kishk, S
    Javidi, B
    OPTICS EXPRESS, 2003, 11 (08): : 874 - 888
  • [48] Automatic patient alignment system using 3D ultrasound (vol 40, 041714, 2013)
    Kaar, Marcus
    Figl, Michael
    Hoffmann, Rainer
    Birkfellner, Wolfgang
    Stock, Markus
    Georg, Dietmar
    Goldner, Gregor
    Hummel, Johann
    MEDICAL PHYSICS, 2013, 40 (06)
  • [49] Strong-Weak Feature Alignment for 3D Object Detection
    Wang, Zhiyu
    Wang, Li
    Dai, Bin
    ELECTRONICS, 2021, 10 (10)
  • [50] Automatic alignment for virtual fitting using 3D garment stretching and human body relocation
    Luchen Huang
    Ruoyu Yang
    The Visual Computer, 2016, 32 : 705 - 715