Analyzing longitudinal binary data in clinical studies

被引:7
作者
Li, Yihan [1 ]
Feng, Dai [1 ]
Sui, Yunxia [1 ]
Li, Hong [1 ]
Song, Yanna [1 ]
Zhan, Tianyu [1 ]
Cicconetti, Greg [1 ]
Jin, Man [1 ]
Wang, Hongwei [1 ]
Chan, Ivan [1 ,2 ]
Wang, Xin [1 ,2 ]
机构
[1] AbbVie Inc, Data & Stat Sci, 1 North Waukegan Rd, N Chicago, IL 60064 USA
[2] Bristol Myers Squibb, Global Biometr & Data Sci, 300 Connell Dr, Berkeley Hts, NJ 07922 USA
关键词
Longitudinal data analysis; Binary endpoints; GLMM; GEE; Multiple imputation; MAR; MULTIPLE-IMPUTATION; ESTIMATING EQUATIONS; ARTHRITIS; DISCRETE; MODELS;
D O I
10.1016/j.cct.2022.106717
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
In clinical studies, it is common to have binary outcomes collected over time as repeated measures. This manuscript reviews and evaluates two popular classes of statistical methods for analyzing binary response data with repeated measures: likelihood-based Generalized Linear Mixed Model (GLMM), and semiparametric Generalized Estimating Equation (GEE). Recommendations for choice of analysis model and points to consider for implementation in clinical studies in the presence of missing data are provided based on a comprehensive literature review, as well as, a simulation study evaluating the performance of both GLMM and GEE under scenarios representative of typical clinical trial settings. Under Missing at Random (MAR) assumption, GLMM is preferred over GEE, and the SAS PROC GLIMMIX marginal model is recommended for implementing GLMM in analyzing clinical trial data. When there is an underlying continuous variable used to define the binary response, and the missing proportion is high and/or unbalanced between treatment groups, a two-step approach combining Multiple Imputation (MI) and GEE (MI-GEE) is recommended.
引用
收藏
页数:7
相关论文
共 23 条
[1]   A simulation study comparing weighted estimating equations with multiple imputation based estimating equations for longitudinal binary data [J].
Beunckens, Caroline ;
Sotto, Cristina ;
Molenberghs, Geert .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (03) :1533-1548
[2]   Doubly Robust and Multiple-Imputation-Based Generalized Estimating Equations [J].
Birhanu, Teshome ;
Molenberghs, Geert ;
Sotto, Cristina ;
Kenward, Michael G. .
JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2011, 21 (02) :202-225
[3]  
Brand J.P.L., 1999, Teacher empowerment: Definitions, implementation, and strategies for personal renewal
[4]   APPROXIMATE INFERENCE IN GENERALIZED LINEAR MIXED MODELS [J].
BRESLOW, NE ;
CLAYTON, DG .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) :9-25
[5]   Analysis of multivariate probit models [J].
Chib, S ;
Greenberg, E .
BIOMETRIKA, 1998, 85 (02) :347-361
[6]   Effect of tight control of inflammation in early psoriatic arthritis (TICOPA): a UK multicentre, open-label, randomised controlled trial [J].
Coates, Laura C. ;
Moverley, Anna R. ;
McParland, Lucy ;
Brown, Sarah ;
Navarro-Coy, Nuria ;
O'Dwyer, John L. ;
Meads, David M. ;
Emery, Paul ;
Conaghan, Philip G. ;
Helliwell, Philip S. .
LANCET, 2015, 386 (10012) :2489-2498
[7]   Randomised trial and open-label extension study of an anti-interleukin-6 antibody in Crohn's disease (ANDANTE I and II) [J].
Danese, Silvio ;
Vermeire, Severine ;
Hellstern, Paul ;
Panaccione, Remo ;
Rogler, Gerhard ;
Fraser, Gerald ;
Kohn, Anna ;
Desreumaux, Pierre ;
Leong, Rupert W. ;
Comer, Gail M. ;
Cataldi, Fabio ;
Banerjee, Anindita ;
Maguire, Mary K. ;
Li, Cheryl ;
Rath, Natalie ;
Beebe, Jean ;
Schreiber, Stefan .
GUT, 2019, 68 (01) :40-48
[8]   Imputation strategies when a continuous outcome is to be dichotomized for responder analysis: a simulation study [J].
Floden, Lysbeth ;
Bell, Melanie L. .
BMC MEDICAL RESEARCH METHODOLOGY, 2019, 19 (1)
[9]  
GILMOUR AR, 1985, BIOMETRIKA, V72, P593, DOI 10.1093/biomet/72.3.593
[10]   Efficacy and Safety of Oral Janus Kinase 1 Inhibitor Abrocitinib for Patients With Atopic Dermatitis A Phase 2 Randomized Clinical Trial [J].
Gooderham, Melinda J. ;
Forman, Seth B. ;
Bissonnette, Robert ;
Beebe, Jean S. ;
Zhang, Weidong ;
Banfield, Chris ;
Zhu, Linda ;
Papacharalambous, Jocelyne ;
Vincent, Michael S. ;
Peeva, Elena .
JAMA DERMATOLOGY, 2019, 155 (12) :1371-1379