An accurate machine learning calculator for the lithium-graphite system

被引:16
作者
Babar, Mohammad [1 ]
Parks, Holden L. [1 ]
Houchins, Gregory [2 ]
Viswanathan, Venkatasubramanian [1 ,2 ]
机构
[1] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA
来源
JOURNAL OF PHYSICS-ENERGY | 2021年 / 3卷 / 01期
基金
美国国家科学基金会;
关键词
machine learning; open circuit voltage; lithium– graphite; phase diagram; density functional theory; GENERALIZED GRADIENT APPROXIMATION; PHASE-DIAGRAM; ELASTIC-CONSTANTS; INTERCALATION; CARBON; 1ST-PRINCIPLES; SUPPRESSION; MOLECULES; DISORDER; KINETICS;
D O I
10.1088/2515-7655/abc96f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Machine-learning potentials are accelerating the development of energy materials, especially in identifying phase diagrams and other thermodynamic properties. In this work, we present a neural network potential based on atom-centered symmetry function descriptors to model the energetics of lithium intercalation into graphite. The potential was trained on a dataset of over 9000 diverse lithium-graphite configurations that varied in applied stress and strain, lithium concentration, lithium-carbon and lithium-lithium bond distances, and stacking order to ensure wide sampling of the potential atomic configurations during intercalation. We calculated the energies of these structures using density functional theory (DFT) through the Bayesian error estimation functional with van der Waals correlation exchange-correlation functional, which can accurately describe the van der Waals interactions that are crucial to determining the thermodynamics of this phase space. Bayesian optimization, as implemented in Dragonfly, was used to select optimal set of symmetry function parameters, ultimately resulting in a potential with a prediction error of 8.24 meV atom(-1) on unseen test data. The potential can predict energies, structural properties, and elastic constants at an accuracy comparable to other DFT exchange-correlation functionals at a fraction of the computational cost. The accuracy of the potential is also comparable to similar machine-learned potentials describing other systems. We calculate the open circuit voltage with the calculator and find good agreement with experiment, especially in the regime x >= 0.3, for x in LixC6. This study further illustrates the power of machine learning potentials, which promises to revolutionize design and optimization of battery materials.
引用
收藏
页数:14
相关论文
共 70 条
[21]   MECHANISMS FOR LITHIUM INSERTION IN CARBONACEOUS MATERIALS [J].
DAHN, JR ;
ZHENG, T ;
LIU, YH ;
XUE, JS .
SCIENCE, 1995, 270 (5236) :590-593
[22]   Modelling and understanding battery materials with machine-learning-driven atomistic simulations [J].
Deringer, Volker L. .
JOURNAL OF PHYSICS-ENERGY, 2020, 2 (04)
[23]   Machine learning based interatomic potential for amorphous carbon [J].
Deringer, Volker L. ;
Csanyi, Gabor .
PHYSICAL REVIEW B, 2017, 95 (09)
[24]   Phase Evolution and Intermittent Disorder in Electrochemically Lithiated Graphite Determined Using in Operando Neutron Diffraction [J].
Didier, Christophe ;
Pang, Wei Kong ;
Guo, Zaiping ;
Schmid, Siegbert ;
Peterson, Vanessa K. .
CHEMISTRY OF MATERIALS, 2020, 32 (06) :2518-2531
[25]   Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method [J].
Enkovaara, J. ;
Rostgaard, C. ;
Mortensen, J. J. ;
Chen, J. ;
Dulak, M. ;
Ferrighi, L. ;
Gavnholt, J. ;
Glinsvad, C. ;
Haikola, V. ;
Hansen, H. A. ;
Kristoffersen, H. H. ;
Kuisma, M. ;
Larsen, A. H. ;
Lehtovaara, L. ;
Ljungberg, M. ;
Lopez-Acevedo, O. ;
Moses, P. G. ;
Ojanen, J. ;
Olsen, T. ;
Petzold, V. ;
Romero, N. A. ;
Stausholm-Moller, J. ;
Strange, M. ;
Tritsaris, G. A. ;
Vanin, M. ;
Walter, M. ;
Hammer, B. ;
Hakkinen, H. ;
Madsen, G. K. H. ;
Nieminen, R. M. ;
Norskov, J. K. ;
Puska, M. ;
Rantala, T. T. ;
Schiotz, J. ;
Thygesen, K. S. ;
Jacobsen, K. W. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (25)
[26]   Gaussian approximation potential modeling of lithium intercalation in carbon nanostructures [J].
Fujikake, So ;
Deringer, Volker L. ;
Lee, Tae Hoon ;
Krynski, Marcin ;
Elliott, Stephen R. ;
Csanyi, Gabor .
JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (24)
[27]   Stratified construction of neural network based interatomic models for multicomponent materials [J].
Hajinazar, Samad ;
Shao, Junping ;
Kolmogorov, Aleksey N. .
PHYSICAL REVIEW B, 2017, 95 (01)
[28]   Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space [J].
Hansen, Katja ;
Biegler, Franziska ;
Ramakrishnan, Raghunathan ;
Pronobis, Wiktor ;
von Lilienfeld, O. Anatole ;
Mueller, Klaus-Robert ;
Tkatchenko, Alexandre .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (12) :2326-2331
[29]   The atomic simulation environment-a Python']Python library for working with atoms [J].
Hjorth Larsen, Ask ;
Mortensen, Jens Jorgen ;
Blomqvist, Jakob ;
Castelli, Ivano E. ;
Christensen, Rune ;
Dulak, Marcin ;
Friis, Jesper ;
Groves, Michael N. ;
Hammer, Bjork ;
Hargus, Cory ;
Hermes, Eric D. ;
Jennings, Paul C. ;
Jensen, Peter Bjerre ;
Kermode, James ;
Kitchin, John R. ;
Kolsbjerg, Esben Leonhard ;
Kubal, Joseph ;
Kaasbjerg, Kristen ;
Lysgaard, Steen ;
Maronsson, Jon Bergmann ;
Maxson, Tristan ;
Olsen, Thomas ;
Pastewka, Lars ;
Peterson, Andrew ;
Rostgaard, Carsten ;
Schiotz, Jakob ;
Schutt, Ole ;
Strange, Mikkel ;
Thygesen, Kristian S. ;
Vegge, Tejs ;
Vilhelmsen, Lasse ;
Walter, Michael ;
Zeng, Zhenhua ;
Jacobsen, Karsten W. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (27)
[30]   The formation of salts from graphite by strong acids. [J].
Hofmann, U ;
Rudorff, W .
TRANSACTIONS OF THE FARADAY SOCIETY, 1938, 34 (02) :1017-1021