Dynamic generalized linear models;
Covariance matrix;
Transfer function;
CHAIN MONTE-CARLO;
D O I:
10.1016/j.cam.2015.10.015
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Statistical inference for dynamic generalized linear models (DGLMs) is challenging due to the time varying nature of the unknown parameters in these models. In this paper, we focus on the covariance matrix and the transfer function, the two key components in DGLMs. We first establish some convergence results for the covariance matrix estimation. We then provide an in-depth study of the transfer function on its stability and Fourier transformation, which is necessary for parameter estimation in DGLMs. Implications of our results on estimation in DGLMs are illustrated in the paper through a simulation study and a real data example. Our understanding on DGLMs has substantially improved though this study. (C) 2015 Elsevier B.V. All rights reserved.
机构:
Sungkyunkwan Univ, Dept Stat, 25-2 Sungkyunkwan Ro, Seoul 03063, South KoreaSungkyunkwan Univ, Dept Stat, 25-2 Sungkyunkwan Ro, Seoul 03063, South Korea
Han, Eun-Jeong
Lee, Keunbaik
论文数: 0引用数: 0
h-index: 0
机构:
Sungkyunkwan Univ, Dept Stat, 25-2 Sungkyunkwan Ro, Seoul 03063, South KoreaSungkyunkwan Univ, Dept Stat, 25-2 Sungkyunkwan Ro, Seoul 03063, South Korea
机构:
Univ Estado Rio De Janeiro, Inst Matemat & Estatist, Dept Estatist, BR-20559900 Rio De Janeiro, BrazilUniv Estado Rio De Janeiro, Inst Matemat & Estatist, Dept Estatist, BR-20559900 Rio De Janeiro, Brazil
Alves, Mariane B.
Gamerman, Dani
论文数: 0引用数: 0
h-index: 0
机构:
Univ Estado Rio De Janeiro, Inst Matemat, Dept Metodos Estatist, BR-20559900 Rio De Janeiro, BrazilUniv Estado Rio De Janeiro, Inst Matemat & Estatist, Dept Estatist, BR-20559900 Rio De Janeiro, Brazil
Gamerman, Dani
Ferreira, Marco A. R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Missouri, Dept Stat, Columbia, MO 65211 USAUniv Estado Rio De Janeiro, Inst Matemat & Estatist, Dept Estatist, BR-20559900 Rio De Janeiro, Brazil