Dynamic Modeling and Experimental Validation of an Impact-Driven Piezoelectric Energy Harvester in Magnetic Field

被引:8
作者
Chen, Chung-De [1 ]
Wu, Yu-Hsuan [1 ]
Su, Po-Wen [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Mech Engn, Tainan 701, Taiwan
关键词
piezoelectric energy harvesting; vibration; frequency-up conversion; FREQUENCY UP-CONVERSION;
D O I
10.3390/s20216170
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this study, an impact-driven piezoelectric energy harvester (PEH) in magnetic field is presented. The PEH consists of a piezoelectric cantilever beam and plural magnets. At its initial status, the beam tip magnet is attracted by a second magnet. The second magnet is moved away by hand and then the beam tip magnet moves to a third magnet by the guidance of the magnetic fields. The impact occurs when the beam motion is stopped by the third magnet. The impact between magnets produces an impact energy and causes a transient beam vibration. The electric energy is generated by the piezoelectric effect. Based on the energy principle, a multi-DOF (multi-degree of freedom) mathematical model was developed to calculate the displacements, velocities, and voltage outputs of the PEH. A prototype of the PEH was fabricated. The voltages outputs of the beam were monitored by an oscilloscope. The maximum generated energy was about 0.4045 mJ for a single impact. A comparison between numerical and experimental results was presented in detail. It showed that the predictions based on the model agree with the experimental measurements. The PEH was connected to a diode bridge rectifier and a storage capacitor. The charges generated by the piezoelectric beam were stored in the capacitor by ten impacts. The experiments showed that the energy stored in the capacitor can light up the LED.
引用
收藏
页码:1 / 19
页数:20
相关论文
共 50 条
  • [31] Magnetic plucked meso-scale piezoelectric energy harvester for low-frequency rotational motion
    Chen, C. T.
    Su, W. J.
    Wu, W. J.
    Vasic, D.
    Costa, F.
    SMART MATERIALS AND STRUCTURES, 2021, 30 (10)
  • [32] Modeling and Simulation of MEMS-Based Piezoelectric Energy Harvester
    Dao Ngoc Tuan
    Le Phuoc Thanh Quang
    Than Hong Phuc
    Tran Thi Tra Vinh
    Hoang Huu Duc
    Nguyen Vu Anh Quang
    Tran The Son
    2022 INTERNATIONAL CONFERENCE ON IC DESIGN AND TECHNOLOGY (ICICDT), 2022, : 101 - 104
  • [33] Modeling, Simulation and Analysis of Intermediate Fixed Piezoelectric Energy Harvester
    Wang, Yulong
    Lv, Yaran
    Lv, Baozhan
    Zhang, Ying
    ENERGIES, 2022, 15 (09)
  • [34] Magnetic Excitation for Coupled Pendulum and Piezoelectric Wave Energy Harvester
    Feng, Wuwei
    Luo, Xiang
    Yang, Shujie
    Zou, Qingping
    MICROMACHINES, 2025, 16 (03)
  • [35] Experimental investigation on an energy storage in a piezoelectric harvester for a rotating shaft
    Micek, Piotr
    Grzybek, Dariusz
    2019 20TH INTERNATIONAL CARPATHIAN CONTROL CONFERENCE (ICCC), 2019, : 433 - 436
  • [36] Nonlinear Piezoelectric Energy Harvester: Experimental Output Power Mapping
    Burda, Ioan
    VIBRATION, 2022, 5 (03): : 483 - 496
  • [37] Evaluation and validation of a multiphysics finite element model for a piezoelectric energy harvester
    Melro, Andrew
    Liu, Kefu
    TRANSACTIONS OF THE CANADIAN SOCIETY FOR MECHANICAL ENGINEERING, 2021, 45 (04) : 562 - 572
  • [38] Modeling and Experiment of a Multiple-DOF Piezoelectric Energy Harvester
    Tang, Lihua
    Yang, Yaowen
    Wu, Hao
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2012, 2012, 8341
  • [39] STUDY OF AN IMPACT DRIVEN FREQUENCY UP-CONVERSION PIEZOELECTRIC HARVESTER
    Abedini, Amin
    Onsorynezhad, Saeed
    Wang, Fengxia
    PROCEEDINGS OF THE ASME 10TH ANNUAL DYNAMIC SYSTEMS AND CONTROL CONFERENCE, 2017, VOL 3, 2017,
  • [40] Experimental study of coupled dynamic and electric characteristics of piezoelectric energy harvester under variable resistive load
    Dauksevicius, R.
    Milasauskaite, I.
    Ostasevicius, V.
    Jurenas, V.
    Mikuckyte, S.
    JOURNAL OF VIBROENGINEERING, 2012, 14 (03) : 1435 - 1443