Synthesis of nanoscale high purity rutile titania by a rapid gas-phase chemical reaction

被引:9
|
作者
Luo Ning [1 ,2 ,3 ]
Jing Hongwen [1 ,2 ]
Ma Zhanguo [1 ,2 ]
Yu Liyuan [1 ,2 ]
机构
[1] China Univ Min & Technol, State Key Lab Geomech & Deep Underground Engn, Xuzhou 221116, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Sch Mech & Civil Engn, Xuzhou 221116, Jiangsu, Peoples R China
[3] Beijing Inst Technol, State Key Lab Explos Sci & Technol, Beijing 100081, Peoples R China
基金
跨世纪优秀人才计划 国家教委《跨世纪优秀人才计划》基金; 中国博士后科学基金; 中国国家自然科学基金;
关键词
Nanoparticles; High purity; Rutile TiO2; Structure; Rapid synthesis; Gas-phase chemical reaction; TIO2; NANOPARTICLES; DETONATION; NANOTUBES;
D O I
10.1016/j.matlet.2014.08.107
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The production of high purity rutile titanium dioxide (TiO2) nanoparticles was carried out by a rapid gas-phase chemical reaction under initial chemical reaction conditions (initial temperature, ignition energy and gas pressure about 100-200 degrees C, 40 J and 1-4 MPa, respectively). The results showed the sphere, high purity and disperse rutile structure TiO2 nanoparticles with an average size of 25 nm, which were studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), Energy Dispersive X-ray Detector (EDX) and X fluorescence spectrometer (XRF). (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:164 / 166
页数:3
相关论文
共 50 条
  • [21] Synthesis of nanocrystalline rutile-phase titania at low temperatures
    Santos, J. G.
    Ogasawara, T.
    Correa, R. A.
    MATERIALS SCIENCE-POLAND, 2009, 27 (04): : 1067 - 1076
  • [22] Precise Control of Nanoscale Cu Etching via Gas-Phase Oxidation and Chemical Complexation
    Sheil, Ryan
    Martirez, J. Mark P.
    Sang, Xia
    Carter, Emily A.
    Chang, Jane P.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (03): : 1819 - 1832
  • [23] CHEMICAL-REACTION OF MUONIUM WITH CL2 IN GAS-PHASE
    FLEMING, DG
    GARNER, DM
    BREWER, JH
    WARREN, JB
    MARSHALL, GM
    CLARK, G
    PIFER, AE
    BOWEN, T
    CHEMICAL PHYSICS LETTERS, 1977, 48 (02) : 393 - 398
  • [24] RELAXATION AND CHEMICAL-REACTION OF VIBRATIONALLY EXCITED MOLECULES IN THE GAS-PHASE
    KNEBA, M
    STENDER, R
    WELLHAUSEN, U
    WOLFRUM, J
    JOURNAL OF MOLECULAR STRUCTURE, 1980, 59 (JAN) : 207 - 224
  • [25] The Q-K model for gas-phase chemical reaction rates
    Bird, G. A.
    PHYSICS OF FLUIDS, 2011, 23 (10)
  • [26] ISOTOPE EFFECTS AND CHEMICAL-REACTION DYNAMICS OF MUONIUM IN THE GAS-PHASE
    CONNOR, JNL
    HYPERFINE INTERACTIONS, 1981, 8 (4-6): : 423 - 434
  • [27] Machine Learning Accelerated Analysis of Chemical Reaction Networks for Gas-Phase Reaction Systems
    Liu, Yan
    Mo, Yiming
    Cheng, Youwei
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2025, 64 (10) : 5200 - 5211
  • [28] Specific and Reproducible Gas Sensors Utilizing Gas-Phase Chemical Reaction on Organic Transistors
    Zang, Yaping
    Zhang, Fengjiao
    Huang, Dazhen
    Di, Chong-an
    Meng, Qing
    Gao, Xike
    Zhu, Daoben
    ADVANCED MATERIALS, 2014, 26 (18) : 2862 - 2867
  • [29] Synthesis of rutile from high titania slag by pyrometallurgical route
    Zhang Li
    Li Guang-qiang
    Zhang Wu
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2011, 21 (10) : 2317 - 2322
  • [30] Gas-Phase Synthesis of Nanoscale Silicon as an Economical Route Towards Sustainable Energy Technology
    Hulser, Tim
    Schnurre, Sophie Marie
    Wiggers, Hartmut
    Schulz, Christof
    KONA POWDER AND PARTICLE JOURNAL, 2011, (29) : 191 - 207