A Bayesian Nonparametric Modeling Framework for Developmental Toxicity Studies Rejoinder

被引:0
作者
Fronczyk, Kassandra [1 ]
Kottas, Athanasios [1 ]
机构
[1] Univ Calif Santa Cruz, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA
基金
美国国家科学基金会;
关键词
Dependent Dirichlet process; Developmental toxicology data; Dirichlet process mixture models; Gaussian process; Markov chain Monte Carlo; Risk assessment;
D O I
10.1080/01621459.2014.932171
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop a Bayesian nonparametric mixture modeling framework for replicated count responses in dose-response settings. We explore this methodology for modeling and risk assessment in developmental toxicity studies, where the primary objective is to determine the relationship between the level of exposure to a toxic chemical and the probability of a physiological or biochemical response, or death. Data from these experiments typically involve features that cannot be captured by standard parametric approaches. To provide flexibility in the functional form of both the response distribution and the probability of positive response, the proposed mixture model is built from a dependent Dirichlet process prior, with the dependence of the mixing distributions governed by the dose level. The methodology is tested with a simulation study, which involves also comparison with semiparametric Bayesian approaches to highlight the practical utility of the dependent Dirichlet process nonparametric mixture model. Further illustration is provided through the analysis of data from two developmental toxicity studies.
引用
收藏
页码:891 / 893
页数:3
相关论文
共 50 条
  • [41] Modeling publication bias using weighted distributions in a Bayesian framework
    Larose, DT
    Dey, DK
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1998, 26 (03) : 279 - 302
  • [42] Oral and Dermal Developmental Toxicity Studies of Phenylethyl Alcohol in Rats
    Politano, Valerie T.
    Diener, Robert M.
    Christian, Mildred S.
    Hoberman, Alan M.
    Palmer, Anthony
    Ritacco, Gretchen
    Adams, Timothy B.
    Api, Anne Marie
    INTERNATIONAL JOURNAL OF TOXICOLOGY, 2013, 32 (01) : 32 - 38
  • [43] Sensitivity of different generations and developmental stages in studies on reproductive toxicity
    Schulz, F.
    Batke, M.
    Mangelsdorf, I.
    Pohlenz-Michel, C.
    Simetska, N.
    Lewin, G.
    TOXICOLOGY LETTERS, 2014, 226 (02) : 245 - 255
  • [44] MultiBUGS: A Parallel Implementation of the BUGS Modeling Framework for Faster Bayesian Inference
    Goudie, Robert J. B.
    Turner, Rebecca M.
    De Angelis, Daniela
    Thomas, Andrew
    JOURNAL OF STATISTICAL SOFTWARE, 2020, 95 (07): : 1 - 20
  • [45] DESIGN OF DEVELOPMENTAL TOXICITY STUDIES FOR ASSESSING JOINT EFFECTS OF DOSE AND DURATION
    SCHARFSTEIN, DO
    WILLIAMS, PL
    RISK ANALYSIS, 1994, 14 (06) : 1057 - 1071
  • [46] Spatial modeling for risk assessment of extreme values from environmental time series: a Bayesian nonparametric approach
    Kottas, Athanasios
    Wang, Ziwei
    Rodriguez, Abel
    ENVIRONMETRICS, 2012, 23 (08) : 649 - 662
  • [47] HAZOP studies using a functional modeling framework
    Luis de la Mata, Jose
    Rodriguez, Manuel
    22 EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2012, 30 : 1038 - 1042
  • [48] Analysis of exposure margins in developmental toxicity studies for detection of human teratogens
    Andrews, Paul A.
    Blanset, Diann
    Costa, Priscila Lemos
    Green, Martin
    Green, Maia L.
    Jacobs, Abigail
    Kadaha, Rajkumar
    Lebron, Jose A.
    Mattson, Britta
    McNerney, Mary Ellen
    Minck, Daniel
    Oliveira, Luana de Castro
    Theunissen, Peter T.
    DeGeorge, Joseph J.
    REGULATORY TOXICOLOGY AND PHARMACOLOGY, 2019, 105 : 62 - 68
  • [49] A shared response model for clustered binary data in developmental toxicity studies
    Pang, Z
    Kuk, AYC
    BIOMETRICS, 2005, 61 (04) : 1076 - 1084
  • [50] Predicting the Climatology of Tornado Occurrences in North America with a Bayesian Hierarchical Modeling Framework*
    Cheng, Vincent Y. S.
    Arhonditsis, George B.
    Sills, David M. L.
    Gough, William A.
    Auld, Heather
    JOURNAL OF CLIMATE, 2016, 29 (05) : 1899 - 1917