An adjoint-based lattice Boltzmann method for noise control problems

被引:19
作者
Vergnault, E. [1 ,2 ]
Sagaut, P. [1 ,2 ]
机构
[1] Univ Paris 06, Inst Jean Rond Alembert, UMR 7190, F-75005 Paris, France
[2] CNRS, Inst Jean Rond Alembert, UMR 7190, F-75005 Paris, France
关键词
Lattice Boltzmann method; Adjoint problem; Optimization; Active noise reduction; NAVIER-STOKES EQUATIONS; SENSITIVITY-ANALYSIS; COMPLEX-VARIABLES; TOPOLOGY OPTIMIZATION; BOUNDARY-CONDITIONS; FLUID-FLOW; BGK MODEL; DIFFERENTIATION; DERIVATIVES; IDENTIFICATION;
D O I
10.1016/j.jcp.2014.07.027
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper optimal control of acoustic problems is addressed within the lattice Boltzmann method framework. To this end, an adjoint-based lattice Boltzmann method is proposed to solve the adjoint problem. The adjoint state provides an easy access to the optimization gradients. The line search step in Newton's descent method is performed through a combination of complex differentiation and adjoint problem in the lattice Boltzmann method. The implementation of an active noise reduction method for two-dimensional weakly compressible (low Mach number) flows is discussed, and the applicability of the method is assessed. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:39 / 61
页数:23
相关论文
共 30 条
  • [1] Lattice-Boltzmann Method for Complex Flows
    Aidun, Cyrus K.
    Clausen, Jonathan R.
    [J]. ANNUAL REVIEW OF FLUID MECHANICS, 2010, 42 : 439 - 472
  • [2] Massively parallel lattice-Boltzmann simulation of turbulent channel flow
    Amati, G
    Succi, S
    Piva, R
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1997, 8 (04): : 869 - 877
  • [3] Sensitivity analysis for Navier-Stokes equations on unstructured meshes using complex variables
    Anderson, WK
    Nielsen, EJ
    [J]. AIAA JOURNAL, 2001, 39 (01) : 56 - 63
  • [4] THE LATTICE BOLTZMANN-EQUATION - THEORY AND APPLICATIONS
    BENZI, R
    SUCCI, S
    VERGASSOLA, M
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1992, 222 (03): : 145 - 197
  • [5] MUPHY: A parallel MUlti PHYsics/scale code for high performance bio-fluidic simulations
    Bernaschi, M.
    Melchionna, S.
    Succi, S.
    Fyta, M.
    Kaxiras, E.
    Sircar, J. K.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (09) : 1495 - 1502
  • [6] A MODEL FOR COLLISION PROCESSES IN GASES .1. SMALL AMPLITUDE PROCESSES IN CHARGED AND NEUTRAL ONE-COMPONENT SYSTEMS
    BHATNAGAR, PL
    GROSS, EP
    KROOK, M
    [J]. PHYSICAL REVIEW, 1954, 94 (03): : 511 - 525
  • [7] A Complex Automata approach for in-stent restenosis: Two-dimensional multiscale modelling and simulations
    Caiazzo, Alfonso
    Evans, David
    Falcone, Jean-Luc
    Hegewald, Jan
    Lorenz, Eric
    Stahl, Bernd
    Wang, Dinan
    Bernsdorf, Joerg
    Chopard, Bastien
    Gunn, Julian
    Hose, Rod
    Krafczyk, Manfred
    Lawford, Pat
    Smallwood, Rod
    Walker, Dawn
    Hoekstra, Alfons
    [J]. JOURNAL OF COMPUTATIONAL SCIENCE, 2011, 2 (01) : 9 - 17
  • [8] Forth S., 2012, LECT NOTES COMPUT SC, V87
  • [9] Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model
    He, XY
    Zou, QS
    Luo, LS
    Dembo, M
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1997, 87 (1-2) : 115 - 136
  • [10] Lattice-Boltzmann hydrodynamics on parallel systems
    Kandhai, D
    Koponen, A
    Hoekstra, AG
    Kataja, M
    Timonen, J
    Sloot, PMA
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 1998, 111 (1-3) : 14 - 26