Calibrationless Parallel Imaging Reconstruction Based on Structured Low-Rank Matrix Completion

被引:253
作者
Shin, Peter J. [1 ,2 ]
Larson, Peder E. Z. [1 ,2 ]
Ohliger, Michael A. [1 ]
Elad, Michael [4 ]
Pauly, John M. [5 ]
Vigneron, Daniel B. [1 ,2 ]
Lustig, Michael [2 ,3 ]
机构
[1] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA 94143 USA
[2] Univ Calif Berkeley, UCSF Grad Program Bioengn, Berkeley, CA USA
[3] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[4] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel
[5] Stanford Univ, Dept Elect Engn, Magnet Resonance Syst Res Lab, Stanford, CA 94305 USA
基金
美国国家卫生研究院;
关键词
parallel imaging; structured low-rank matrix completion; rapid MRI; compressed sensing; SPIRiT; GRAPPA; COIL SENSITIVITIES; SENSE; MRI; PROJECTIONS; ALGORITHM;
D O I
10.1002/mrm.24997
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeA calibrationless parallel imaging reconstruction method, termed simultaneous autocalibrating and k-space estimation (SAKE), is presented. It is a data-driven, coil-by-coil reconstruction method that does not require a separate calibration step for estimating coil sensitivity information. MethodsIn SAKE, an undersampled, multichannel dataset is structured into a single data matrix. The reconstruction is then formulated as a structured low-rank matrix completion problem. An iterative solution that implements a projection-onto-sets algorithm with singular value thresholding is described. ResultsReconstruction results are demonstrated for retrospectively and prospectively undersampled, multichannel Cartesian data having no calibration signals. Additionally, non-Cartesian data reconstruction is presented. Finally, improved image quality is demonstrated by combining SAKE with wavelet-based compressed sensing. ConclusionBecause estimation of coil sensitivity information is not needed, the proposed method could potentially benefit MR applications where acquiring accurate calibration data is limiting or not possible at all. Magn Reson Med 72:959-970, 2014. (c) 2013 Wiley Periodicals, Inc.
引用
收藏
页码:959 / 970
页数:12
相关论文
共 40 条
  • [11] Ipsen ICF, 2009, NUMERICAL MATRIX ANALYSIS: LINEAR SYSTEMS AND LEAST SQUARES, P1
  • [12] Parallel magnetic resonance imaging
    Larkman, David J.
    Nunes, Rita G.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2007, 52 (07) : R15 - R55
  • [13] Larsen RM., 1998, PB357 DAIMI
  • [14] Lustig M, 2011, P 19 ANN M ISMRM MON, P483
  • [15] Lustig M., 2010, P 18 ANN M ISMRM STO, V18, P2870
  • [16] Sparse MRI: The application of compressed sensing for rapid MR imaging
    Lustig, Michael
    Donoho, David
    Pauly, John M.
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2007, 58 (06) : 1182 - 1195
  • [17] SPIRiT: Iterative Self-consistent Parallel Imaging Reconstruction From Arbitrary k-Space
    Lustig, Michael
    Pauly, John M.
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2010, 64 (02) : 457 - 471
  • [18] Structured low-rank approximation and its applications
    Markovsky, Ivan
    [J]. AUTOMATICA, 2008, 44 (04) : 891 - 909
  • [19] Self-calibrating parallel imaging with automatic coil sensitivity extraction
    McKenzie, CA
    Yeh, EN
    Ohliger, MA
    Price, MD
    Sodickson, DK
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2002, 47 (03) : 529 - 538
  • [20] Multichannel estimation of coil sensitivities in parallel MRI
    Morrison, Robert L., Jr.
    Jacob, Mathews
    Do, Minh N.
    [J]. 2007 4TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING : MACRO TO NANO, VOLS 1-3, 2007, : 117 - +