Stochastic Modeling of Multidimensional Particle Properties Using Parametric Copulas

被引:20
|
作者
Furat, Orkun [1 ]
Leissner, Thomas [2 ]
Bachmann, Kai [3 ]
Gutzmer, Jens [3 ]
Peuker, Urs [2 ]
Schmidt, Volker [1 ]
机构
[1] Ulm Univ, Inst Stochast, D-89069 Ulm, Germany
[2] Tech Univ Bergakad Freiberg, Inst Mech Proc Engn & Mineral Proc, D-09599 Freiberg, Germany
[3] Helmholtz Zentrum Dresden Rossendorf, Helmholtz Inst Freiberg Resource Technol, D-01328 Dresden, Germany
关键词
mineral liberation analyzer (MLA); stereology; multidimensional particle characterization; parametric copula; X-ray micro tomography (XMT);
D O I
10.1017/S1431927619000321
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, prediction models are proposed which allow the mineralogical characterization of particle systems observed by X-ray micro tomography (XMT). The models are calibrated using 2D image data obtained by a combination of scanning electron microscopy and energy dispersive X-ray spectroscopy in a planar cross-section of the XMT data. To reliably distinguish between different minerals the models are based on multidimensional distributions of certain particle characteristics describing, for example, their size, shape, and texture. These multidimensional distributions are modeled using parametric Archimedean copulas which are able to describe the correlation structure of complex multidimensional distributions with only a few parameters. Furthermore, dimension reduction of the multidimensional vectors of particle characteristics is utilized to make non-parametric approaches such as the computation of distributions via kernel density estimation viable. With the help of such distributions the proposed prediction models are able to distinguish between different types of particles among the entire XMT image.
引用
收藏
页码:720 / 734
页数:15
相关论文
共 50 条
  • [41] STOCHASTIC PARTICLE DISPERSION MODELING AND THE TRACER-PARTICLE LIMIT
    MACINNES, JM
    BRACCO, FV
    PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1992, 4 (12): : 2809 - 2824
  • [42] Parametric Analysis of Stochastic Oscillators by the Statistical Modeling Method
    Yakunin, M. A.
    NUMERICAL ANALYSIS AND APPLICATIONS, 2020, 13 (03) : 282 - 292
  • [43] Parametric Analysis of Stochastic Oscillators by the Statistical Modeling Method
    M. A. Yakunin
    Numerical Analysis and Applications, 2020, 13 : 282 - 292
  • [44] PARAMETRIC MODELING OF STOCHASTIC WAVE EFFECTS ON OFFSHORE PLATFORMS
    LI, YS
    KAREEM, A
    APPLIED OCEAN RESEARCH, 1993, 15 (02) : 63 - 83
  • [45] Stochastic Simulation of Daily Suspended Sediment Concentration Using Multivariate Copulas
    Peng, Yang
    Yu, Xianliang
    Yan, Hongxiang
    Zhang, Jipeng
    WATER RESOURCES MANAGEMENT, 2020, 34 (12) : 3913 - 3932
  • [46] STOCHASTIC PROPERTIES OF THE DISCRETE PARAMETRIC FOURIER TRANSFORMATION
    PONOMAREV, VA
    RADIOTEKHNIKA I ELEKTRONIKA, 1983, 28 (08): : 1590 - 1595
  • [47] Bivariate distribution modeling of tree diameters and heights: Dependency modeling using copulas
    Wang, Mingliang
    Rennolls, Keith
    Tang, Shouzheng
    FOREST SCIENCE, 2008, 54 (03) : 284 - 293
  • [48] Stochastic modeling of multidimensional precipitation fields considering spectral structure
    Yoo, CS
    Valdes, JB
    North, GR
    WATER RESOURCES RESEARCH, 1996, 32 (07) : 2175 - 2187
  • [49] Heavy-tailed longitudinal data modeling using copulas
    Sun, Jiafeng
    Frees, Edward W.
    Rosenberg, Marjorie A.
    INSURANCE MATHEMATICS & ECONOMICS, 2008, 42 (02): : 817 - 830
  • [50] A STOCHASTIC PARTICLE SYSTEM MODELING THE CARLEMAN EQUATION
    CAPRINO, S
    DEMASI, A
    PRESUTTI, E
    PULVIRENTI, M
    JOURNAL OF STATISTICAL PHYSICS, 1989, 55 (3-4) : 625 - 638