Stochastic Modeling of Multidimensional Particle Properties Using Parametric Copulas

被引:20
|
作者
Furat, Orkun [1 ]
Leissner, Thomas [2 ]
Bachmann, Kai [3 ]
Gutzmer, Jens [3 ]
Peuker, Urs [2 ]
Schmidt, Volker [1 ]
机构
[1] Ulm Univ, Inst Stochast, D-89069 Ulm, Germany
[2] Tech Univ Bergakad Freiberg, Inst Mech Proc Engn & Mineral Proc, D-09599 Freiberg, Germany
[3] Helmholtz Zentrum Dresden Rossendorf, Helmholtz Inst Freiberg Resource Technol, D-01328 Dresden, Germany
关键词
mineral liberation analyzer (MLA); stereology; multidimensional particle characterization; parametric copula; X-ray micro tomography (XMT);
D O I
10.1017/S1431927619000321
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, prediction models are proposed which allow the mineralogical characterization of particle systems observed by X-ray micro tomography (XMT). The models are calibrated using 2D image data obtained by a combination of scanning electron microscopy and energy dispersive X-ray spectroscopy in a planar cross-section of the XMT data. To reliably distinguish between different minerals the models are based on multidimensional distributions of certain particle characteristics describing, for example, their size, shape, and texture. These multidimensional distributions are modeled using parametric Archimedean copulas which are able to describe the correlation structure of complex multidimensional distributions with only a few parameters. Furthermore, dimension reduction of the multidimensional vectors of particle characteristics is utilized to make non-parametric approaches such as the computation of distributions via kernel density estimation viable. With the help of such distributions the proposed prediction models are able to distinguish between different types of particles among the entire XMT image.
引用
收藏
页码:720 / 734
页数:15
相关论文
共 50 条
  • [31] STOCHASTIC MODELING OF PARTICLE DEPOSITION ON COLLECTORS
    TIEN, C
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1984, 26 (04) : 355 - 356
  • [32] Application of stochastic weighted algorithms to a multidimensional silica particle model
    Menz, William J.
    Patterson, Robert I. A.
    Wagner, Wolfgang
    Kraft, Markus
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 248 : 221 - 234
  • [33] Multidimensional Scaling Visualization Using Parametric Entropy
    Lopes, Antonio M.
    Tenreiro Machado, J. A.
    Galhano, Alexandra M.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (14):
  • [34] Modeling multivariate ocean data using asymmetric copulas
    Zhang, Yi
    Kim, Chul-Woo
    Beer, Michael
    Dai, Huliang
    Soares, Carlos Guedes
    COASTAL ENGINEERING, 2018, 135 : 91 - 111
  • [35] Multivariate modeling of flood characteristics using Vine copulas
    Fatih Tosunoglu
    Faruk Gürbüz
    Muhammet Nuri İspirli
    Environmental Earth Sciences, 2020, 79
  • [36] Multivariate modeling of flood characteristics using Vine copulas
    Tosunoglu, Fatih
    Gurbuz, Faruk
    Ispirli, Muhammet Nuri
    ENVIRONMENTAL EARTH SCIENCES, 2020, 79 (19)
  • [37] Modeling Multivariate Distributions Using Copulas: Applications in Marketing
    Danaher, Peter J.
    Smith, Michael S.
    MARKETING SCIENCE, 2011, 30 (01) : 4 - 21
  • [38] Decomposition of stochastic properties within images using non-parametric methods
    Hetzheim, H
    Dooley, LS
    ICSP '96 - 1996 3RD INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, PROCEEDINGS, VOLS I AND II, 1996, : 1142 - 1145
  • [39] Stochastic Simulation of Daily Suspended Sediment Concentration Using Multivariate Copulas
    Yang Peng
    Xianliang Yu
    Hongxiang Yan
    Jipeng Zhang
    Water Resources Management, 2020, 34 : 3913 - 3932
  • [40] Stochastic representation of FGM copulas using multivariate Bernoulli random variables
    Blier-Wong, Christopher
    Cossette, Helene
    Marceau, Etienne
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 173