Stochastic Modeling of Multidimensional Particle Properties Using Parametric Copulas

被引:20
|
作者
Furat, Orkun [1 ]
Leissner, Thomas [2 ]
Bachmann, Kai [3 ]
Gutzmer, Jens [3 ]
Peuker, Urs [2 ]
Schmidt, Volker [1 ]
机构
[1] Ulm Univ, Inst Stochast, D-89069 Ulm, Germany
[2] Tech Univ Bergakad Freiberg, Inst Mech Proc Engn & Mineral Proc, D-09599 Freiberg, Germany
[3] Helmholtz Zentrum Dresden Rossendorf, Helmholtz Inst Freiberg Resource Technol, D-01328 Dresden, Germany
关键词
mineral liberation analyzer (MLA); stereology; multidimensional particle characterization; parametric copula; X-ray micro tomography (XMT);
D O I
10.1017/S1431927619000321
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, prediction models are proposed which allow the mineralogical characterization of particle systems observed by X-ray micro tomography (XMT). The models are calibrated using 2D image data obtained by a combination of scanning electron microscopy and energy dispersive X-ray spectroscopy in a planar cross-section of the XMT data. To reliably distinguish between different minerals the models are based on multidimensional distributions of certain particle characteristics describing, for example, their size, shape, and texture. These multidimensional distributions are modeled using parametric Archimedean copulas which are able to describe the correlation structure of complex multidimensional distributions with only a few parameters. Furthermore, dimension reduction of the multidimensional vectors of particle characteristics is utilized to make non-parametric approaches such as the computation of distributions via kernel density estimation viable. With the help of such distributions the proposed prediction models are able to distinguish between different types of particles among the entire XMT image.
引用
收藏
页码:720 / 734
页数:15
相关论文
共 50 条
  • [1] Stochastic Modeling of Hydroclimatic Processes Using Vine Copulas
    Pouliasis, George
    Torres-Alves, Gina Alexandra
    Morales-Napoles, Oswaldo
    WATER, 2021, 13 (16)
  • [2] Using Copulas for Modeling Stochastic Dependence in Power System Uncertainty Analysis
    Papaefthymiou, George
    Kurowicka, Dorota
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2009, 24 (01) : 40 - 49
  • [3] Modeling Stochastic Data Using Copulas for Applications in the Validation of Autonomous Driving
    Lotto, Katrin
    Nagler, Thomas
    Radic, Mladjan
    ELECTRONICS, 2022, 11 (24)
  • [4] Parametric Modeling of Sparse Random Trees Using 3D Copulas
    Neuhaeuser, David
    Hirsch, Christian
    Gloaguen, Catherine
    Schmidt, Volker
    STOCHASTIC MODELS, 2015, 31 (02) : 226 - 260
  • [5] Analysis of the Parametric Correlation in Mathematical Modeling of In Vitro Glioblastoma Evolution Using Copulas
    Ayensa-Jimenez, Jacobo
    Perez-Aliacar, Marina
    Randelovic, Teodora
    Sanz-Herrera, Jose Antonio
    Doweidar, Mohamed H.
    Doblare, Manuel
    MATHEMATICS, 2021, 9 (01) : 1 - 22
  • [6] Modeling stochastic frontier based on vine copulas
    Constantino, Michel
    Candido, Osvaldo
    Tabak, Benjamin M.
    da Costa, Reginaldo Brito
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 486 : 595 - 609
  • [7] Stochastic modeling for scheduling the charging demand of EV in distribution systems using copulas
    Bina, V. Tavakoli
    Ahmadi, D.
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2015, 71 : 15 - 25
  • [8] Modeling of Multipath Environment Using Copulas for Particle Filtering Based GPS Navigation
    Pereira, Vincent
    Giremus, Audrey
    Grivel, Eric
    IEEE SIGNAL PROCESSING LETTERS, 2012, 19 (06) : 360 - 363
  • [9] Parametric Modeling of Electrocardiograms using Particle Swarm Optimization
    Peng, Tommy
    Trew, Mark
    Malik, Avinash
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 2695 - 2698
  • [10] Multidimensional characterization of particle morphology and mineralogical composition using CT data and R-vine copulas
    Furat, Orkun
    Kirstein, Tom
    Leissner, Thomas
    Bachmann, Kai
    Gutzmer, Jens
    Peuker, Urs A.
    Schmidt, Volker
    MINERALS ENGINEERING, 2024, 206