m6A Reader HNRNPA2B1 Promotes Esophageal Cancer Progression via Up-Regulation of ACLY and ACC1

被引:88
作者
Guo, Huimin [1 ]
Wang, Bei [2 ]
Xu, Kaiyue [3 ]
Nie, Ling [4 ]
Fu, Yao [4 ]
Wang, Zhangding [1 ]
Wang, Qiang [5 ]
Wang, Shouyu [5 ,6 ,7 ]
Zou, Xiaoping [1 ]
机构
[1] Nanjing Univ, Med Sch, Affiliated Drum Tower Hosp, Dept Gastroenterol, Nanjing, Peoples R China
[2] Nanjing Univ, Med Sch, Affiliated Hosp, Yancheng Hosp 1, Nanjing, Peoples R China
[3] Nanjing Med Univ, Affiliated Hosp 1, Dept Radiotherapy, Nanjing, Peoples R China
[4] Nanjing Univ, Med Sch, Affiliated Drum Tower Hosp, Dept Pathol, Nanjing, Peoples R China
[5] Nanjing Univ, Med Sch, Affiliated Drum Tower Hosp, Dept Hepatobiliary Surg, Nanjing, Peoples R China
[6] Nanjing Univ, Med Sch, Jiangsu Key Lab Mol Med, Nanjing, Peoples R China
[7] Nanjing Univ, Med Sch, Ctr Publ Hlth Res, Nanjing, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
m(6)A; esophageal cancer; fatty acid synthesis; ACLY; ACC1; RNA METHYLATION REGULATORS; MESSENGER-RNA; METABOLISM; EXPRESSION; ROLES;
D O I
10.3389/fonc.2020.553045
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
N6-methyladenosine (m(6)A) modification is the most abundant modification on eukaryotic RNA. In recent years, lots of studies have reported that m(6)A modification and m(6)A RNA methylation regulators were involved in cancer progression. However, the m(6)A level and its regulators in esophageal cancer (ESCA) remain poorly understood. In this study, we analyzed the expression of m(6)A regulators using The Cancer Genome Atlas data and found 14 of 19 m(6)A regulators are significantly increased in ESCA samples. Then we performed a univariate Cox regression analysis and LASSO (least absolute shrinkage and selection operator) Cox regression model to investigate the prognostic role of m(6)A regulators in ESCA, and the results indicated that a two-gene prognostic signature including ALKBH5 and HNRNPA2B1 could predict overall survival of ESCA patients. Moreover, HNRNPA2B1 is higher expressed in high-risk scores subtype of ESCA, indicating that HNRNPA2B1 may be involved in ESCA development. Subsequently, we confirmed that the level of m(6)A and HNRNPA2B1 was significantly increased in ESCA. We also found that HNRNPA2B1 expression positively correlated with tumor diameter and lymphatic metastasis of ESCA. Moreover, functional study showed that knockdown of HNRNPA2B1 inhibited the proliferation, migration, and invasion of ESCA. Mechanistically, we found that knockdown of HNRNPA2B1 inhibited the expression ofde novofatty acid synthetic enzymes, ACLY and ACC1, and subsequently suppressed cellular lipid accumulation. In conclusion, our study provides critical clues to understand the role of m(6)A and its regulators in ESCA. Moreover, HNRNPA2B1 functions as an oncogenic factor in promoting ESCA progression via up-regulation of fatty acid synthesis enzymes ACLY and ACC1, and it may be a promising prognostic biomarker and therapeutic target for human ESCA.
引用
收藏
页数:15
相关论文
共 44 条
[1]   Global incidence of oesophageal cancer by histological subtype in 2012 [J].
Arnold, Melina ;
Soerjomataram, Isabelle ;
Ferlay, Jacques ;
Forman, David .
GUT, 2015, 64 (03) :381-387
[2]   Targeting hallmarks of cancer to enhance radiosensitivity in gastrointestinal cancers [J].
Buckley, Amy M. ;
Lynam-Lennon, Niamh ;
O'Neill, Hazel ;
O'Sullivan, Jacintha .
NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY, 2020, 17 (05) :298-313
[3]   Exosomal long noncoding RNA LNMAT2 promotes lymphatic metastasis in bladder cancer [J].
Chen, Changhao ;
Luo, Yuming ;
He, Wang ;
Zhao, Yue ;
Kong, Yao ;
Liu, Hongwei ;
Zhong, Guangzheng ;
Li, Yuting ;
Li, Jun ;
Huang, Jian ;
Chen, Rufu ;
Lin, Tianxin .
JOURNAL OF CLINICAL INVESTIGATION, 2020, 130 (01) :404-421
[4]   m6A RNA methylation regulators can contribute to malignant progression and impact the prognosis of bladder cancer [J].
Chen, Mei ;
Nie, Zhen-yu ;
Wen, Xiao-hong ;
Gao, Yuan-hui ;
Cao, Hui ;
Zhang, Shu-fang .
BIOSCIENCE REPORTS, 2019, 39
[5]   The emerging roles of N6-methyladenosine (m6A) deregulation in liver carcinogenesis [J].
Chen, Mengnuo ;
Wong, Chun-Ming .
MOLECULAR CANCER, 2020, 19 (01)
[6]   Cancer Statistics in China, 2015 [J].
Chen, Wanqing ;
Zheng, Rongshou ;
Baade, Peter D. ;
Zhang, Siwei ;
Zeng, Hongmei ;
Bray, Freddie ;
Jemal, Ahmedin ;
Yu, Xue Qin ;
He, Jie .
CA-A CANCER JOURNAL FOR CLINICIANS, 2016, 66 (02) :115-132
[7]   The role of m6A RNA methylation in human cancer [J].
Chen, Xiao-Yu ;
Zhang, Jing ;
Zhu, Jin-Shui .
MOLECULAR CANCER, 2019, 18 (1)
[8]   Integrative Analysis of NSCLC Identifies LINC01234 as an Oncogenic lncRNA that Interacts with HNRNPA2B1 and Regulates miR-106b Biogenesis [J].
Chen, Zhenyao ;
Chen, Xin ;
Lei, Tianyao ;
Gu, Yu ;
Gu, Jinyao ;
Huang, Jiali ;
Lu, Binbin ;
Yuan, Li ;
Sun, Ming ;
Wang, Zhaoxia .
MOLECULAR THERAPY, 2020, 28 (06) :1479-1493
[9]   Cancer Metabolism: Current Understanding and Therapies [J].
Counihan, Jessica L. ;
Grossman, Elizabeth A. ;
Nomura, Daniel K. .
CHEMICAL REVIEWS, 2018, 118 (14) :6893-6923
[10]   IDENTIFICATION OF METHYLATED NUCLEOSIDES IN MESSENGER-RNA FROM NOVIKOFF HEPATOMA-CELLS [J].
DESROSIERS, R ;
FRIDERICI, K ;
ROTTMAN, F .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1974, 71 (10) :3971-3975