Prediction of soil organic carbon stock using visible and near infrared reflectance spectroscopy (VNIRS) in the field

被引:55
|
作者
Cambou, Aurelie [1 ]
Cardinael, Remi [1 ]
Kouakoua, Ernest [1 ]
Villeneuve, Manon [1 ]
Durand, Celine [1 ]
Barthes, Bernard G. [1 ]
机构
[1] Montpellier SupAgro, UMR Eco & Sols, IRD, F-34060 Montpellier 2, France
关键词
Bulk density; Agroforestry; Proximal soil sensing; In situ measurements; SPECTRA; MATTER;
D O I
10.1016/j.geoderma.2015.07.007
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Due to the role of soils in the global carbon cycle, there is increasing demand for data on soil organic carbon (SOC) stock, but the conventional determination of SOC stock (SSOC) is tedious and hardly allows meeting this demand. Visible and near infrared diffuse reflectance spectroscopy (VNIRS) is a time- and cost-effective approach that has been successfully used for characterizing SOC concentration, even in the field. The present study aimed at testing the potential of VNIRS for characterizing SSOC in the field, from spectra acquired on partially disturbed cores collected using a manual auger (thus not using cylinder sampling except for calibration), at 0-10, 10-20 and 20-30 cm depth in two agroforestry fields in France. Both fields were on silty Luvisols under temperate climate and included tree rows with grass cover, plowed interrows with cereals, and a conventional agricultural plot without trees. Conventional determination of SSOC involved bulk density measurement (cylinder method) and SOC concentration analysis (dry combustion) on the same samples, and was calculated as their product. VNIR spectra were acquired using an ASD LabSpec 2500 spectrophotometer, on the outer side of cores collected using a manual auger, at three points around the place where SSOC was determined. In total, 288 samples were studied (144 per field). Calibration with partial least squares regression was carried out on the 200 most spectrally representative samples, and validation was performed on the remaining samples. Considering the determination coefficient for validation (R-val(2)), standard error of prediction corrected for bias (SEPc) and ratio of standard deviation of the validation subset to SEPc (denoted RPDval), the VNIRS prediction of SOC concentration was accurate (R-val(2) = 0.75; SEPc = 1.6 gC kg(-1) soil < 2 mm, i.e. 13% of the mean; RPDval: = 2.0). The prediction of SSOC was acceptable (R-val(2) = 0.70; SEPc = 2.0 gC dm(-3), representing 13% of the mean; RPDval = 1.8). Part of the VNIRS prediction error could be attributed to the fact that conventional and spectral measurements were not made on the same samples. Scanning the cylinder cores would probably result in better VNIRS predictions but is not consistent with the objective of determining SSOC without tedious cylinder sampling (except for calibration). However, conventional determination of SOC concentration on auger cores (rather than on cylinder cores) could be a valuable solution for improving calibration, with the perspective to develop a rapid procedure for accurate VNIRS prediction of SOC stock in the field. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:151 / 159
页数:9
相关论文
共 50 条
  • [41] Near-Infrared Spectroscopy: Assessment of Soil Organic Carbon Stock in a Colombian Oxisol
    Fernandez-Martinez, Felipe
    Camacho-Tamayo, Jesus Hernan
    Rubiano-Sanabria, Yolanda
    INGENIERIA E INVESTIGACION, 2023, 43 (03):
  • [42] Soil Organic Carbon Content Estimation with Laboratory-Based Visible-Near-Infrared Reflectance Spectroscopy: Feature Selection
    Shi, Tiezhu
    Chen, Yiyun
    Liu, Huizeng
    Wang, Junjie
    Wu, Guofeng
    APPLIED SPECTROSCOPY, 2014, 68 (08) : 831 - 837
  • [43] A model for inferring dissolved organic carbon (DOC) in lakewater from visible-near-infrared spectroscopy (VNIRS) measures in lake sediment
    Alexandra Rouillard
    Peter Rosén
    Marianne S. V. Douglas
    Reinhard Pienitz
    John P. Smol
    Journal of Paleolimnology, 2011, 46 : 187 - 202
  • [44] A model for inferring dissolved organic carbon (DOC) in lakewater from visible-near-infrared spectroscopy (VNIRS) measures in lake sediment
    Rouillard, Alexandra
    Rosen, Peter
    Douglas, Marianne S. V.
    Pienitz, Reinhard
    Smol, John P.
    JOURNAL OF PALEOLIMNOLOGY, 2011, 46 (02) : 187 - 202
  • [45] Prediction of Soil Organic Carbon Contents in Tibet Using a Visible Near-Infrared Spectral Library
    Jia, Xiaolin
    Xie, Modian
    Hu, Bifeng
    Zhou, Yin
    Li, Hongyi
    Zhao, Wanru
    Deng, Wanming
    Shi, Zhou
    EURASIAN SOIL SCIENCE, 2023, 56 (06) : 727 - 737
  • [46] Prediction of Soil Organic Carbon Contents in Tibet Using a Visible Near-Infrared Spectral Library
    Xiaolin Jia
    Modian Xie
    Bifeng Hu
    Yin Zhou
    Hongyi Li
    Wanru Zhao
    Wanming Deng
    Zhou Shi
    Eurasian Soil Science, 2023, 56 : 727 - 737
  • [47] Prediction of soil cation exchange capacity using visible and near infrared spectroscopy
    Ulusoy, Yahya
    Tekin, Yucel
    Tumsavas, Zeynal
    Mouazen, Abdul M.
    BIOSYSTEMS ENGINEERING, 2016, 152 : 79 - 93
  • [48] PREDICTION OF SOIL LEAD CONTENT USING VISIBLE AND NEAR-INFRARED SPECTROSCOPY
    Zhang, Xia
    Sun, Weichao
    Qi, Wenchao
    Wu, Xing
    2018 9TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2018,
  • [49] Determination of soil organic carbon and nitrogen at the field level using near-infrared spectroscopy
    Martin, PD
    Malley, DF
    Manning, G
    Fuller, L
    CANADIAN JOURNAL OF SOIL SCIENCE, 2002, 82 (04) : 413 - 422
  • [50] Soil organic carbon predictions in Subarctic Greenland by visible-near infrared spectroscopy
    Ogric, M.
    Knadel, M.
    Kristiansen, S. M.
    Peng, Y.
    De Jonge, L. W.
    Adhikari, K.
    Greve, M. H.
    ARCTIC ANTARCTIC AND ALPINE RESEARCH, 2019, 51 (01) : 490 - 505