In vitro screening of forty medicinal plant extracts from the United States Northern Great Plains for anthelmintic activity against Haemonchus contortus

被引:25
|
作者
Acharya, Jyotsna [1 ]
Hildreth, Michael B. [1 ]
Reese, R. Neil [1 ]
机构
[1] S Dakota State Univ, Dept Biol & Microbiol, Brookings, SD 57007 USA
基金
美国国家科学基金会;
关键词
Haemonchus contortus; Ericameria; Rhus; Egg hatch assay; Larval migration assay; Anthelmintic; CHRYSOTHAMNUS-NAUSEOSUS; MELILOTUS-OFFICINALIS; PARASITIC NEMATODES; ESSENTIAL OIL; SWEET CLOVER; RESISTANCE; INFECTIONS; FLAVONOIDS; RAT;
D O I
10.1016/j.vetpar.2014.01.008
中图分类号
R38 [医学寄生虫学]; Q [生物科学];
学科分类号
07 ; 0710 ; 09 ; 100103 ;
摘要
An egg hatch assay (EHA) and a larval migration assay (LMA) involving Haemonchus contortus was used to evaluate the anthelmintic activity of methanol extracts from 40 plants that are native or naturalized within the U.S.A. Northern Great Plains. Only one of these 40 plants (i.e. Lotus corniculatus) had been previously evaluated for activity against any gastrointestinal nematode. The various extracts were initially screened at 50 mg/ml diluted either in 0.5% dimethyl sulphoxide (DMSO) or 3-(N-morpholino) propanesulfonic acid (MOPS buffer), and plants showing 100% inhibition at 50 mg/ml, were further evaluated at 8 other concentrations (25-0.19 mg/ml). Extracts with 100% activity with the EHA were again screened with the LMA (50 mg/ml). Two extracts with the highest LMA inhibition were also evaluated at lower concentrations (25-3.1 mg/ml). Of the 40 methanolic extracts screened, 7 (Chrysothamnus viscidiflorus, Ericameria nauseosa, Liatris punctata, Melilotus alba, Melilotus officinalis, Perideridia gairdneri, and Sanguinaria canadensis) showed significant egg-hatch inhibition in DMSO and MOPS buffer. Three extracts (Geranium viscosissimum, L. corniculatus, and Rhus aromatica) only showed significant inhibition in DMSO. The 8 extracts showing 100% efficacy at 50 mg/ml exhibited dose-dependent effects at the 8 lower concentrations, and R. aromatica and E. nauseosa extracts had the lowest ED50 values. Similarly, when these 8 plant extracts were further evaluated with the LMA, the extracts of E. nauseosa and R. aromatica again exhibited the highest activity (p < 0.001), with ED50 values of 4.0 mg/ml and 10.43 mg/ml respectively. Three other extracts (C. viscidiflorus, M. alba and M. officinalis) also showed inhibitory activity in the LMA. These results support the need for additional evaluations of the nematocidal properties for at least these 5 plants. (C) 2014 Published by Elsevier B.V.
引用
收藏
页码:75 / 81
页数:7
相关论文
共 50 条
  • [21] Evaluation of Anthelminthic Activity of Tropical Taniferous Plant Extracts Against Haemonchus contortus
    Birhan, Mastewal
    Gesses, Tilahun
    Kenubih, Ambaye
    Dejene, Haileyesus
    Yayeh, Muluken
    VETERINARY MEDICINE-RESEARCH AND REPORTS, 2020, 11 : 109 - 117
  • [22] In vitro anthelmintic activity of aqueous and ethanol extracts of Paraserianthes falcataria bark waste against Haemonchus contortus obtained from a local slaughterhouse in Indonesia
    Baihaqi, Zein Ahmad
    Widiyono, Irkham
    Nurcahyo, Wisnu
    VETERINARY WORLD, 2020, 13 (08) : 1549 - 1554
  • [23] In Vitro Anthelmintic Activity of a Hydroalcoholic Extract from Guazuma ulmifolia Leaves against Haemonchus contortus
    Resendiz-Gonzalez, Guillermo
    Isabel Higuera-Piedrahita, Rosa
    Lara-Bueno, Alejandro
    Gonzalez-Garduno, Roberto
    Alberto Cortes-Morales, Jorge
    Gonzalez-Cortazar, Manases
    Mendoza-de Gives, Pedro
    Guadalupe Romero-Romero, Sara
    Olmedo-Juarez, Agustin
    PATHOGENS, 2022, 11 (10):
  • [24] In vitro anthelmintic activity assessment of six medicinal plant aqueous extracts against donkey strongyles
    Buza, V
    Catana, L.
    Andrei, S. M.
    Stefanut, L. C.
    Raileanu, S.
    Matei, M. C.
    Vlasiuc, I
    Cernea, M.
    JOURNAL OF HELMINTHOLOGY, 2020, 94
  • [25] Molecular Identification, Chemical Composition, and In Vitro Anthelmintic Activity of Sargassum duplicatum Against Haemonchus contortus
    Sakti, A. A.
    Kustantinah
    Sofyan, A.
    Nurcahyo, R. W.
    Fidriyanto, R.
    Kusnadi, H.
    Prasetyo, A.
    Putnarubun, C.
    Permadi, S.
    Pramono
    Hartati, L.
    Hudaifa, I.
    Suwignyo, B.
    TROPICAL ANIMAL SCIENCE JOURNAL, 2024, 47 (02) : 188 - 196
  • [26] The in vitro anthelmintic properties of browse plant species against Haemonchus contortus is determined by the polyphenol content and composition
    Mengistu, G.
    Hoste, H.
    Karonene, M.
    Salminen, J. -P.
    Hendriks, W. H.
    Pellikaan, W. F.
    VETERINARY PARASITOLOGY, 2017, 237 : 110 - 116
  • [27] In vitro anthelmintic activity of Lippia alba essential oil chemotypes against Haemonchus contortus
    Barbosa, Matheus Luiggi Freitas
    Ribeiro, Wesley Lyeverton Correia
    de Araujo Filho, Jose Vilemar
    Pereira, Rita de Cassia Alves
    Andre, Weibson Paz Pinheiro
    Melo, Ana Carolina Fonseca Lindoso
    Castelo-Branco, Debora de Souza Collares Maia
    de Morais, Selene Maia
    de Oliveira, Lorena Mayana Beserra
    Bevilaqua, Claudia Maria Leal
    EXPERIMENTAL PARASITOLOGY, 2023, 244
  • [28] Phytochemical screening and in vitro anthelmintic activity of methanolic extract of Terminalia glaucescens leaf on Haemonchus contortus eggs
    Busari, I. O.
    Soetan, K. O.
    Aiyelaagbe, O. O.
    Babayemi, O. J.
    ACTA TROPICA, 2021, 223
  • [29] A cysteine protease from the latex of Ficus benjamina has in vitro anthelmintic activity against Haemonchus contortus
    Wanderley, Ledia Feitosa
    dos Santos Soares, Alexandra Martins
    Rocha e Silva, Carolina
    de Figueiredo, Isaias Moreira
    da Silva Ferreira, Andre Teixeira
    Perales, Jonas
    de Oliveira Mota, Handerson Ribeiro
    Abreu Oliveira, Jose Tadeu
    Costa Junior, Livio Martins
    REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA, 2018, 27 (04): : 473 - 480
  • [30] In vitro anthelmintic activity of Dennettia tripetala G. Baker (Annonaceae) Fruits against Haemonchus contortus
    Nwosu R.A.
    Suleiman M.M.
    Makun H.J.
    Ameh M.P.
    Shetshak M.A.
    Akefe I.O.
    Journal of Parasitic Diseases, 2022, 46 (1) : 220 - 229