The Number of Eigenvalues of the Three-Particle Schrodinger Operator on Three Dimensional Lattice

被引:3
作者
Khalkhuzhaev, A. M. [1 ]
Abdullaev, J. I. [2 ]
Boymurodov, J. Kh. [3 ]
机构
[1] Romanovskii Inst Math, Tashkent 100174, Uzbekistan
[2] Samarkand State Univ, Samarkand 140104, Uzbekistan
[3] Navoi State Pedag Inst, Navoi 210100, Uzbekistan
关键词
Hamiltonian; Schrodinger operator; three-particle; zero-range; fermion; lattice; eigenvalue; invariant subspace; quasimomentum; SHRODINGER OPERATOR; SPECTRUM; SYSTEM; FERMIONS;
D O I
10.1134/S1995080222150112
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the three-particle discrete Schrodinger operator H-mu,H-gamma(K), K is an element of T-3 associated to a system of three particles (two fermions and one another particle) interacting through zero range pairwise potential mu > 0 on the three-dimensional lattice Z(3). It is proved that there exist positive numbers gamma(2) > gamma(1) that the operator H-mu,H-gamma(pi), pi = (pi, pi, pi) for gamma is an element of(0, gamma(1)) has no eigenvalue, for gamma is an element of(gamma(1,)gamma(2)) has a simple eigenvalue and for gamma > gamma(2) it has three eigenvalues lying below the essential spectrum for sufficiently large mu.
引用
收藏
页码:3486 / 3495
页数:10
相关论文
共 22 条
  • [1] Invariant Subspaces of the Shrodinger Operator with a Finite Support Potential
    Abdullaev, J., I
    Toshturdiev, A. M.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (03) : 728 - 737
  • [2] Abdullaev J. I., 2021, THEOR MATH PHYS+, V2070
  • [3] Albeverio S, 2004, ANN HENRI POINCARE, V5, P743, DOI [10.1007/s00023-004-0181-9, 10.1007/S00023-004-0181-9]
  • [4] A CLASS OF EXACTLY SOLVABLE 3-BODY QUANTUM-MECHANICAL PROBLEMS AND THE UNIVERSAL LOW-ENERGY BEHAVIOR
    ALBEVERIO, S
    HOEGHKROHN, R
    WU, TT
    [J]. PHYSICS LETTERS A, 1981, 83 (03) : 105 - 109
  • [5] EFIMOVS EFFECT - NEW PATHOLOGY OF 3-PARTICLE SYSTEMS .2.
    AMADO, RD
    NOBLE, JV
    [J]. PHYSICAL REVIEW D, 1972, 5 (08): : 1992 - &
  • [6] Efimov Effect for a Three-Particle System with Two Identical Fermions
    Basti, Giulia
    Teta, Alessandro
    [J]. ANNALES HENRI POINCARE, 2017, 18 (12): : 3975 - 4003
  • [7] Spectral Analysis of the 2+1 Fermionic Trimer with Contact Interactions
    Becker, Simon
    Michelangeli, Alessandro
    Ottolini, Andrea
    [J]. MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2018, 21 (04)
  • [8] On the number of eigenvalues of a model operator related to a system of three particles on lattices
    Dell'Antonio, G. F.
    Muminov, Z. I.
    Shermatova, Y. M.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (31)
  • [9] ENERGY LEVELS ARISING FROM RESONANT 2-BODY FORCES IN A 3-BODY SYSTEM
    EFIMOV, V
    [J]. PHYSICS LETTERS B, 1970, B 33 (08) : 563 - &
  • [10] Faddeev L.D., 1993, QUANTUM SCATTERING T, V11