The Number of Eigenvalues of the Three-Particle Schrodinger Operator on Three Dimensional Lattice

被引:3
|
作者
Khalkhuzhaev, A. M. [1 ]
Abdullaev, J. I. [2 ]
Boymurodov, J. Kh. [3 ]
机构
[1] Romanovskii Inst Math, Tashkent 100174, Uzbekistan
[2] Samarkand State Univ, Samarkand 140104, Uzbekistan
[3] Navoi State Pedag Inst, Navoi 210100, Uzbekistan
关键词
Hamiltonian; Schrodinger operator; three-particle; zero-range; fermion; lattice; eigenvalue; invariant subspace; quasimomentum; SHRODINGER OPERATOR; SPECTRUM; SYSTEM; FERMIONS;
D O I
10.1134/S1995080222150112
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the three-particle discrete Schrodinger operator H-mu,H-gamma(K), K is an element of T-3 associated to a system of three particles (two fermions and one another particle) interacting through zero range pairwise potential mu > 0 on the three-dimensional lattice Z(3). It is proved that there exist positive numbers gamma(2) > gamma(1) that the operator H-mu,H-gamma(pi), pi = (pi, pi, pi) for gamma is an element of(0, gamma(1)) has no eigenvalue, for gamma is an element of(gamma(1,)gamma(2)) has a simple eigenvalue and for gamma > gamma(2) it has three eigenvalues lying below the essential spectrum for sufficiently large mu.
引用
收藏
页码:3486 / 3495
页数:10
相关论文
共 50 条