A variance-based method to rank input variables of the Mesh Adaptive Direct Search algorithm

被引:9
作者
Adjengue, Luc [1 ]
Audet, Charles [1 ,2 ]
Ben Yahia, Imen [1 ,2 ]
机构
[1] Ecole Polytech, Dept Math & Genie Ind, Montreal, PQ H3C 3A7, Canada
[2] Ecole Polytech, Gerad, Montreal, PQ H3C 3A7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Direct search; Ranking of variables; Blackbox optimization; OPTIMIZATION; CONVERGENCE;
D O I
10.1007/s11590-013-0688-4
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The Mesh Adaptive Direct Search algorithm (MADS) algorithm is designed for nonsmooth blackbox optimization problems in which the evaluation of the functions defining the problems are expensive to compute. The MADS algorithm is not designed for problems with a large number of variables. The present paper uses a statistical tool based on variance decomposition to rank the relative importance of the variables. This statistical method is then coupled with the MADS algorithm so that the optimization is performed either in the entire space of variables or in sub-spaces associated with statistically important variables. The resulting algorithm is called STATS-MADS and is tested on bound constrained test problems having up to 500 variables. The numerical results show a significant improvement in the objective function value after a fixed budget of function evaluations.
引用
收藏
页码:1599 / 1610
页数:12
相关论文
共 30 条
  • [1] Convergence of mesh adaptive direct search to second-order stationary points
    Abramson, Mark A.
    Audet, Charles
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2006, 17 (02) : 606 - 619
  • [2] ORTHOMADS: A DETERMINISTIC MADS INSTANCE WITH ORTHOGONAL DIRECTIONS
    Abramson, Mark A.
    Audet, Charles
    Dennis, J. E., Jr.
    Le Digabel, Sebastien
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (02) : 948 - 966
  • [3] [Anonymous], 2009, DESIGN ANAL EXPT
  • [4] [Anonymous], 2000, Probability and Statistics series
  • [5] [Anonymous], NOMAD PROJECT
  • [6] Mesh adaptive direct search algorithms for constrained optimization
    Audet, C
    Dennis, JE
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2006, 17 (01) : 188 - 217
  • [7] Convergence results for generalized pattern search algorithms are tight
    Audet, C
    [J]. OPTIMIZATION AND ENGINEERING, 2004, 5 (02) : 101 - 122
  • [8] Audet C., 2009, CAHIERS GERAD
  • [9] Audet C., 2013, CAHIERS GERAD UNPUB
  • [10] Globalization strategies for Mesh Adaptive Direct Search
    Audet, Charles
    Dennis, J. E., Jr.
    Le Digabel, Sebastien
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2010, 46 (02) : 193 - 215