Leibniz algebras constructed by Witt algebras

被引:1
作者
Camacho, L. M. [1 ]
Omirov, B. A. [2 ]
Kurbanbaev, T. K. [3 ]
机构
[1] Univ Seville, Dpto Matemat Aplicada 1, Avda Reina Mercedes, E-41012 Seville, Spain
[2] Natl Univ Uzbekistan, Dept Algebra & Funct Anal, Tashkent, Uzbekistan
[3] Uzbek Acad Sci, Inst Math, Tashkent, Uzbekistan
关键词
Leibniz algebra; Witt Lie algebra; Leibniz representation; right Lie module; classification; REPRESENTATIONS; MODULES;
D O I
10.1080/03081087.2018.1480704
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe infinite-dimensional Leibniz algebras whose associated Lie algebra is the Witt algebra and we prove the triviality of low-dimensional Leibniz cohomology groups of the Witt algebra with the coefficients in itself.
引用
收藏
页码:2048 / 2064
页数:17
相关论文
共 24 条
[1]  
Adashev JQ, 2016, 160704949 ARXIV
[2]   On nilpotent and simple Leibniz algebras [J].
Albeverio, S ;
Ayupov, SA ;
Omirov, BA .
COMMUNICATIONS IN ALGEBRA, 2005, 33 (01) :159-172
[3]  
Albeverio SA., 2006, Rev. Mat. Complut, V19, P183
[4]  
Ayupov SA, ARXIV170808082V1
[5]   Leibniz algebras associated with representations of filiform Lie algebras [J].
Ayupov, Sh. A. ;
Camacho, L. M. ;
Khudoyberdiyev, A. Kh. ;
Omirov, B. A. .
JOURNAL OF GEOMETRY AND PHYSICS, 2015, 98 :181-195
[6]  
Ayupov ShA, 1998, LEIBNIZ ALGEBRAS ALG, P1
[7]   ON LEVI'S THEOREM FOR LEIBNIZ ALGEBRAS [J].
Barnes, Donald W. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2012, 86 (02) :184-185
[8]   ON ENGEL'S THEOREM FOR LEIBNIZ ALGEBRAS [J].
Barnes, Donald W. .
COMMUNICATIONS IN ALGEBRA, 2012, 40 (04) :1388-1389
[9]  
Bosko L., 2011, Involve, V4, P293, DOI DOI 10.2140/INVOLVE.2011.4.293
[10]   Leibniz algebras of Heisenberg type [J].
Calderon, A. J. ;
Camacho, L. M. ;
Omirov, B. A. .
JOURNAL OF ALGEBRA, 2016, 452 :427-447