Spin reorientation driven by the interplay between spin-orbit coupling and Hund's rule coupling in iron pnictides

被引:49
|
作者
Christensen, Morten H. [1 ,2 ]
Kang, Jian [1 ]
Andersen, Brian M. [2 ]
Eremin, Ilya [3 ,4 ]
Fernandes, Rafael M. [1 ]
机构
[1] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA
[2] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark
[3] Ruhr Univ Bochum, Inst Theoret Phys 3, D-44801 Bochum, Germany
[4] Natl Univ Sci & Technol MISiS, Moscow 119049, Russia
关键词
NEMATIC ORDER; SUPERCONDUCTIVITY; MAGNETISM; STATE;
D O I
10.1103/PhysRevB.92.214509
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In most magnetically-ordered iron pnictides, the magnetic moments lie in the FeAs planes, parallel to the modulation direction of the spin stripes. However, recent experiments in hole-doped iron pnictides have observed a reorientation of the magnetic moments from in-plane to out-of-plane. Interestingly, this reorientation is accompanied by a change in the magnetic ground state from a stripe antiferromagnet to a tetragonal nonuniform magnetic configuration. Motivated by these recent observations, here we investigate the origin of the spin anisotropy in iron pnictides using an itinerant microscopic electronic model that respects all the symmetry properties of a single FeAs plane. We find that the interplay between the spin-orbit coupling and the Hund's rule coupling can account for the observed spin anisotropies, including the spin reorientation in hole-doped pnictides, without the need to invoke orbital or nematic order. Our calculations also reveal an asymmetry between the magnetic ground states of electron-and hole-doped compounds, with only the latter displaying tetragonal magnetic states.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] A theoretical study of thionine: spin-orbit coupling and intersystem crossing
    Rodriguez-Serrano, Angela
    Rai-Constapel, Vidisha
    Daza, Martha C.
    Doerr, Markus
    Marian, Christel M.
    PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 2012, 11 (12) : 1860 - 1867
  • [32] Unconventional Pairing in Excitonic Condensates under Spin-Orbit Coupling
    Can, M. Ali
    Hakioglu, T.
    PHYSICAL REVIEW LETTERS, 2009, 103 (08)
  • [33] Magnetoelectric torque and edge currents caused by spin-orbit coupling
    Chen, Wei
    Sigrist, Manfred
    PHYSICAL REVIEW B, 2021, 104 (15)
  • [34] Spin-orbit coupling in "tetrahedral" nickel(II) complexes; An anomaly
    Gerloch, Malcolm
    POLYHEDRON, 2016, 120 : 205 - 207
  • [35] Superexchange and spin-orbit coupling in monolayer and bilayer chromium trihalides
    Song, Kok Wee
    Fal'ko, Vladimir I.
    PHYSICAL REVIEW B, 2022, 106 (24)
  • [36] Spin-orbit coupling and semiclassical electron dynamics in noncentrosymmetric metals
    Samokhin, K. V.
    ANNALS OF PHYSICS, 2009, 324 (11) : 2385 - 2407
  • [37] Spin-orbit coupling and optical detection of spin polarisation in triangular graphene quantum dots
    Potasz, P.
    Guclu, A. D.
    Ozfidan, I.
    Hawrylak, P.
    INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, 2015, 12 (3-4) : 174 - 181
  • [38] Spiral spin textures of a bosonic Mott insulator with SU(3) spin-orbit coupling
    Grass, Tobias
    Chhajlany, Ravindra W.
    Muschik, Christine A.
    Lewenstein, Maciej
    PHYSICAL REVIEW B, 2014, 90 (19)
  • [39] Formation of the skyrmionic polaron by Rashba and Dresselhaus spin-orbit coupling
    Sahu, Pratik
    Nanda, B. R. K.
    Satpathy, S.
    PHYSICAL REVIEW B, 2022, 106 (22)
  • [40] Moire engineering of spin-orbit coupling in twisted platinum diselenide
    Klebl, Lennart
    Xu, Qiaoling
    Fischer, Ammon
    Xian, Lede
    Claassen, Martin
    Rubio, Angel
    Kennes, Dante M.
    ELECTRONIC STRUCTURE, 2022, 4 (01):