Spin-based quantum computers made by chemistry: hows and whys

被引:249
|
作者
Stamp, Philip C. E. [1 ,2 ]
Gaita-Arino, Alejandro [1 ,2 ]
机构
[1] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V5Z 1M9, Canada
[2] Univ British Columbia, Pacific Inst Theoret Phys, Vancouver, BC V5Z 1M9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
SINGLE-MOLECULE MAGNETS; STATE; POLYOXOMETALATE; DECOHERENCE; QUBITS; RELAXATION; TRANSITION; COMPLEXES;
D O I
10.1039/b811778k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This introductory review discusses the main problems facing the attempt to build quantum information processing systems (like quantum computers) from spin-based qubits. We emphasize 'bottom-up' attempts using methods from chemistry. The essentials of quantum computing are explained, along with a description of the qubits and their interactions in terms of physical spin qubits. The main problem to be overcome in this whole field is decoherence-it must be considered in any design for qubits. We give an overview of how decoherence works, and then describe some of the practical ways to suppress contributions to decoherence from spin bath and oscillator bath environments, and from dipolar interactions. Dipolar interactions create special problems of their own because of their long range. Finally, taking into account the problems raised by decoherence, by dipolar interactions, and by architectural constraints, we discuss various strategies for making chemistry-based spin qubits, using both magnetic molecules and magnetic ions.
引用
收藏
页码:1718 / 1730
页数:13
相关论文
共 50 条
  • [31] Probing fundamental physics with spin-based quantum sensors
    Kimball, Derek F. Jackson
    Budker, Dmitry
    Chupp, Timothy E.
    Geraci, Andrew A.
    Kolkowitz, Shimon
    Singh, Jaideep T.
    Sushkov, Alexander O.
    PHYSICAL REVIEW A, 2023, 108 (01)
  • [32] Material platforms for spin-based photonic quantum technologies
    Mete Atatüre
    Dirk Englund
    Nick Vamivakas
    Sang-Yun Lee
    Joerg Wrachtrup
    Nature Reviews Materials, 2018, 3 : 38 - 51
  • [33] Si MOS technology for spin-based quantum computing
    Hutin, L.
    Bertrand, B.
    Maurand, R.
    Crippa, A.
    Urdampilleta, M.
    Kim, Y. J.
    Amisse, A.
    Bohuslavskyi, H.
    Bourdet, L.
    Barraud, S.
    Jeh, X.
    Niquet, Y-M
    Sanquer, M.
    Bauerle, C.
    Meunier, T.
    De Franceschi, S.
    Vinet, M.
    2018 48TH EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE (ESSDERC), 2018, : 12 - 17
  • [34] Silicon CMOS architecture for a spin-based quantum computer
    Veldhorst, M.
    Eenink, H. G. J.
    Yang, C. H.
    Dzurak, A. S.
    NATURE COMMUNICATIONS, 2017, 8
  • [35] All optical spin-based quantum information processing
    Pazy, E
    Calarco, T
    D'Amico, I
    Zanardi, P
    Rossi, F
    Zoller, P
    JOURNAL OF SUPERCONDUCTIVITY, 2003, 16 (02): : 383 - 385
  • [36] Silicon CMOS architecture for a spin-based quantum computer
    M. Veldhorst
    H. G. J. Eenink
    C. H. Yang
    A. S. Dzurak
    Nature Communications, 8
  • [37] Spin-based Quantum Computing in Silicon: Scaling with CMOS
    Zalba, Miguel Fernando Gonzalez
    2022 29TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS (IEEE ICECS 2022), 2022,
  • [38] Molecular Prototypes for Spin-Based CNOT and SWAP Quantum Gates
    Luis, F.
    Repolles, A.
    Martinez-Perez, M. J.
    Aguila, D.
    Roubeau, O.
    Zueco, D.
    Alonso, P. J.
    Evangelisti, M.
    Camon, A.
    Sese, J.
    Barrios, L. A.
    Aromi, G.
    PHYSICAL REVIEW LETTERS, 2011, 107 (11)
  • [39] Robotic Vectorial Field Alignment for Spin-Based Quantum Sensors
    Smith, Joe A.
    Zhang, Dandan
    Balram, Krishna C.
    ADVANCED SCIENCE, 2024, 11 (02)
  • [40] Spin-based quantum computing using electrons on liquid helium
    Lyon, S. A.
    PHYSICAL REVIEW A, 2006, 74 (05):