A nanostructure-based counter electrode for dye-sensitized solar cells by assembly of silver nanoparticles

被引:19
|
作者
Dong, Hua [1 ]
Wu, Zhaoxin [1 ]
Gao, Yucui [1 ]
El-Shafei, Ahmed [2 ]
Jiao, Bo [1 ]
Dai, Yang [1 ]
Hou, Xun [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Key Lab Photon Technol Informat, Key Lab Phys Elect & Devices,Minist Educ, Xian 710049, Peoples R China
[2] N Carolina State Univ, Polymer & Color Chem Program, Raleigh, NC 27695 USA
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Dye-sensitized solar cells; Nanostructure; Counter electrode; Light reflection; Charge transfer characteristic; Surface Plasmon Resonance; CARBON NANOTUBES; PERFORMANCE; FLUORESCENCE; ENHANCEMENT; THICKNESS; EMISSION; GRAPHENE;
D O I
10.1016/j.orgel.2014.03.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A nanostructure-based Pt counter electrode for dye-sensitized solar cells (DSSCs) is fabricated by assembly of silver nanoparticles on glass substrate and deposition of a thin Pt layer. This typical counter electrode has several unique behaviors such as good conductivity, quasi-uniform undulating morphology and high surface area. Studies indicate that the application of the FTO-free nanostructure-based Pt counter electrode in DSSCs can decrease the charge-transfer resistance of the Pt/electrolyte interface, enlarge the light pathway and enhance the light reabsorption superior to the devices with planar Pt counter electrode. In addition, theoretical analysis and experimental study demonstrate that the hot electrons injection effect caused by Localized Surface Plasmon Resonance effect of silver nanoparticles enhances the charge transport characteristic at the Pt/electrolyte interface, and this SPR effect makes the certain contributions on the enhancement of the photovoltaic performance of DSSCs. Compared to the DSSC with traditional planar counter electrode, the incident photon-to-current conversion efficiency, short-circuit current, and power conversion efficiency of DSSCs with nanoparticulate structure are increased by 1.117 times, 1.156 times, and 1.145 times, respectively; and the final power conversion efficiency (PCE) increases from 6.95% to 7.96%. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1641 / 1649
页数:9
相关论文
共 50 条
  • [21] Highly efficient and stable dye-sensitized solar cells based on nanographite/polypyrrole counter electrode
    Yue, Gentian
    Zhang, Xin'an
    Wang, Lei
    Tan, Furui
    Wu, Jihuai
    Jiang, Qiwei
    Lin, Jianming
    Huang, Miaoliang
    Lan, Zhang
    ELECTROCHIMICA ACTA, 2014, 129 : 229 - 236
  • [22] Dye-sensitized solar cells based on porous conjugated polymer counter electrodes
    Torabi, Naeimeh
    Behjat, Abbas
    Jafari, Fatemeh
    THIN SOLID FILMS, 2014, 573 : 112 - 116
  • [23] Multi-Walled Carbon Nanotubes as a New Counter Electrode for Dye-Sensitized Solar Cells
    AbdulAlmohsin, S.
    Mohammed, M.
    Li, Z.
    Thomas, M. A.
    Wu, K. Y.
    Cui, J. B.
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2012, 12 (03) : 2374 - 2379
  • [24] NiS submicron cubes with efficient electrocatalytic activity as the counter electrode of dye-sensitized solar cells
    Yu, Qiongzhe
    Pang, Yashuai
    Jiang, Qiwei
    ROYAL SOCIETY OPEN SCIENCE, 2018, 5 (08):
  • [25] Enhanced Electrochemical Catalytic Efficiencies of Electrochemically Deposited Platinum Nanocubes as a Counter Electrode for Dye-Sensitized Solar Cells
    Wei, Yu-Hsuan
    Tsai, Ming-Chi
    Ma, Chen-Chi M.
    Wu, Hsuan-Chung
    Tseng, Fan-Gang
    Tsai, Chuen-Horng
    Hsieh, Chien-Kuo
    NANOSCALE RESEARCH LETTERS, 2015, 10 : 1 - 8
  • [26] Application of microporous polyaniline counter electrode for dye-sensitized solar cells
    Li, Qinghua
    Wu, Jihuai
    Tang, Qunwei
    Lan, Zhang
    Li, Pinjiang
    Lin, Jianming
    Fan, Leqing
    ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (09) : 1299 - 1302
  • [27] Electrochemical Investigation of PEDOT Counter Electrode for Dye-Sensitized Solar cells
    Machida, Kenji
    Koseki, Kazuya
    Takeuchi, Shingo
    ELECTROCHEMISTRY, 2022, 90 (01)
  • [28] CARBON NANOMATERIALS APPLICATION AS A COUNTER ELECTRODE FOR DYE-SENSITIZED SOLAR CELLS
    Dobrzanski, L. A.
    Prokopowicz, M. Prokopiuk Vel
    Drygala, A.
    Wierzbicka, A.
    Lukaszkowicz, K.
    Szindler, M.
    ARCHIVES OF METALLURGY AND MATERIALS, 2017, 62 (01) : 27 - 32
  • [29] Size effects of platinum nanoparticles on the electrocatalytic ability of the counter electrode in dye-sensitized solar cells
    Yeh, Min-Hsin
    Chang, Shih-Hong
    Lin, Lu-Yin
    Chou, Hung-Lung
    Vittal, R.
    Hwang, Bing-Joe
    Ho, Kuo-Chuan
    NANO ENERGY, 2015, 17 : 241 - 253
  • [30] Application of mesoporous carbon to counter electrode for dye-sensitized solar cells
    Wang, Guiqiang
    Xing, Wei
    Zhuo, Shuping
    JOURNAL OF POWER SOURCES, 2009, 194 (01) : 568 - 573