Multi-coloured jigsaw percolation on random graphs

被引:0
|
作者
Cooley, Oliver [1 ]
Gutierrez, Abraham [1 ]
机构
[1] Graz Univ Technol, Inst Discrete Math, Steyrergasse 30, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
NETWORKS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The jigsaw percolation process, introduced by Brummitt, Chatterjee, Dey and Sivakoff, was inspired by a group of people collectively solving a puzzle. It can also be seen as a measure of whether two graphs on a common vertex set are "jointly connected". In this paper we consider the natural generalisation of this process to an arbitrary number of graphs on the same vertex set. We prove that if these graphs are random, then the jigsaw percolation process exhibits a phase transition in terms of the product of the edge probabilities. This generalises a result of Bollobas, Riordan, Slivken and Smith.
引用
收藏
页码:603 / 624
页数:22
相关论文
共 50 条
  • [1] Multi-coloured Hamilton cycles in random edge-coloured graphs
    Cooper, C
    Frieze, A
    COMBINATORICS PROBABILITY & COMPUTING, 2002, 11 (02): : 129 - 133
  • [2] The threshold for jigsaw percolation on random graphs
    Bollobas, Bela
    Riordan, Oliver
    Slivken, Erik
    Smith, Paul
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (02):
  • [3] THE SHARP THRESHOLD FOR JIGSAW PERCOLATION IN RANDOM GRAPHS
    Cooley, Oliver
    Kapetanopoulos, Tobias
    Makai, Tamas
    ADVANCES IN APPLIED PROBABILITY, 2019, 51 (02) : 378 - 407
  • [4] Multi-coloured memories
    Horsfield, Richard
    PHYSICS WORLD, 2017, 30 (08) : 20 - 20
  • [5] Multi-coloured maze
    Jack, A
    EXPOSITORY TIMES, 2005, 116 (04): : 122 - 122
  • [6] Mescaline in multi-coloured statuettes
    Fucci, N
    Chiarotti, M
    FORENSIC SCIENCE INTERNATIONAL, 1996, 82 (02) : 165 - 169
  • [7] TANGANYIKA - MULTI-COLOURED PROGRAMS
    不详
    ECONOMIST, 1957, 185 (04): : 299 - 300
  • [8] NYAMBURA AND THE MULTI-COLOURED BIRD
    Thiong'o, Ngugi Wa
    WASAFIRI, 2022, 37 (03) : 93 - 98
  • [9] Rapid averaging of multi-coloured ensembles
    Maule, J. J.
    Banks, J.
    Witzel, C.
    Franklin, A.
    PERCEPTION, 2014, 43 (01) : 145 - 145
  • [10] JIGSAW PERCOLATION ON RANDOM HYPERGRAPHS
    Bollobas, Bela
    Cooley, Oliver
    Kang, Mihyun
    Koch, Christoph
    JOURNAL OF APPLIED PROBABILITY, 2017, 54 (04) : 1261 - 1277