Glutaric acid production by systems metabolic engineering of an L-lysine-overproducing Corynebacterium glutamicum

被引:58
|
作者
Han, Taehee [1 ]
Kim, Gi Bae [1 ]
Lee, Sang Yup [1 ,2 ,3 ]
机构
[1] Korea Adv Inst Sci & Technol, Syst Metab Engn & Syst Healthcare Cross Generat C, Metab & Biomol Engn Natl Res Lab, Dept Chem & Biomol Engn,BK21 Plus Program,Inst Bi, Daejeon 34141, South Korea
[2] Korea Adv Inst Sci & Technol, BioInformat Res Ctr, Daejeon 34141, South Korea
[3] Korea Adv Inst Sci & Technol, BioProc Engn Res Ctr, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
metabolic engineering; Corynebacterium glutamicum; glutaric acid; multiomics; ESCHERICHIA-COLI; 5-AMINOVALERATE; CATABOLISM; PATHWAYS;
D O I
10.1073/pnas.2017483117
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Contributed by Sang Yup Lee, October 6, 2020 (sent for review August 18, 2020; There is increasing industrial demand for five-carbon platform chemicals, particularly glutaric acid, a widely used building block chemical for the synthesis of polyesters and polyamides. Here we report the development of an efficient glutaric acid microbial producer by systems metabolic engineering of an L-lysine-overproducing Corynebacterium glutamicum BE strain. Based on our previous study, an optimal synthetic metabolic pathway comprising Pseudomonas putida L-lysine monooxygenase (davB) and 5-aminovaleramide amidohydrolase (davA) genes and C. glutamicum 4-aminobutyrate aminotransferase (gabT) and succinate-semialdehyde dehydrogenase (gabD) genes, was introduced into the C. glutamicum BE strain. Through system-wide analyses including genome-scale metabolic simulation, comparative transcriptome analysis, and flux response analysis, 11 target genes to be manipulated were identified and expressed at desired levels to increase the supply of direct precursor L-lysine and reduce precursor loss. A glutaric acid exporter encoded by ynfM was discovered and overexpressed to further enhance glutaric acid production. Fermentation conditions, including oxygen transfer rate, batch-phase glucose level, and nutrient feeding strategy, were optimized for the efficient production of glutaric acid. Fed-batch culture of the final engineered strain produced 105.3 g/L of glutaric acid in 69 h without any byproduct. The strategies of metabolic engineering and fermentation optimization described here will be useful for developing engineered microorganisms for the high-level bio-based production of other chemicals of interest to industry.
引用
收藏
页码:30328 / 30334
页数:7
相关论文
共 50 条
  • [41] Metabolic Engineering of Corynebacterium glutamicum for Production of UDP-N-Acetylglucosamine
    Gauttam, Rahul
    Desiderato, Christian K.
    Rados, Dusica
    Link, Hannes
    Seibold, Gerd M.
    Eikmanns, Bernhard J.
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2021, 9
  • [42] Metabolic engineering of Corynebacterium glutamicum for anthocyanin production
    Zha, Jian
    Zang, Ying
    Mattozzi, Matthew
    Plassmeier, Jens
    Gupta, Mamta
    Wu, Xia
    Clarkson, Sonya
    Koffas, Mattheos A. G.
    MICROBIAL CELL FACTORIES, 2018, 17
  • [43] Metabolic engineering with adaptive laboratory evolution for phenylalanine production by Corynebacterium glutamicum
    Tachikawa, Yukio
    Okuno, Miki
    Itoh, Takehiko
    Hirasawa, Takashi
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2024, 137 (05) : 344 - 353
  • [44] Metabolic engineering of Corynebacterium glutamicum for the production of itaconate
    Otten, Andreas
    Brocker, Melanie
    Bott, Michael
    METABOLIC ENGINEERING, 2015, 30 : 156 - 165
  • [45] Metabolic engineering of Corynebacterium glutamicum for the production of pyrone and pyridine dicarboxylic acids
    Cho, Jae Sung
    Luo, Zi Wei
    Moon, Cheon Woo
    Prabowo, Cindy Pricilia Surya
    Lee, Sang Yup
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 121 (45)
  • [46] Engineering Corynebacterium glutamicum for Geraniol Production
    Li, Man
    Xu, Shuo
    Lu, Wenyu
    TRANSACTIONS OF TIANJIN UNIVERSITY, 2021, 27 (05) : 377 - 384
  • [47] Metabolic engineering of Corynebacterium glutamicum for L-tyrosine production from glucose and xylose
    Kurpejovic, Eldin
    Burgardt, Arthur
    Bastem, Gulsum Merve
    Junker, Nora
    Wendisch, Volker F.
    Akbulut, Berna Sariyar
    JOURNAL OF BIOTECHNOLOGY, 2023, 363 : 8 - 16
  • [48] Systems metabolic engineering of Corynebacterium glutamicum for production of the chemical chaperone ectoine
    Judith Becker
    Rudolf Schäfer
    Michael Kohlstedt
    Björn J Harder
    Nicole S Borchert
    Nadine Stöveken
    Erhard Bremer
    Christoph Wittmann
    Microbial Cell Factories, 12
  • [49] Metabolic engineering to guide evolution - Creating a novel mode for L-valine production with Corynebacterium glutamicum
    Schwentner, Andreas
    Feith, Andre
    Muench, Eugenia
    Busche, Tobias
    Rueckert, Christian
    Kalinowski, Joern
    Takors, Ralf
    Blombach, Bastian
    METABOLIC ENGINEERING, 2018, 47 : 31 - 41
  • [50] Metabolic engineering Corynebacterium glutamicum to produce triacylglycerols
    Plassmeier, Jens
    Li, Youyuan
    Rueckert, Christian
    Sinskey, Anthony J.
    METABOLIC ENGINEERING, 2016, 33 : 86 - 97