Glutaric acid production by systems metabolic engineering of an L-lysine-overproducing Corynebacterium glutamicum

被引:58
|
作者
Han, Taehee [1 ]
Kim, Gi Bae [1 ]
Lee, Sang Yup [1 ,2 ,3 ]
机构
[1] Korea Adv Inst Sci & Technol, Syst Metab Engn & Syst Healthcare Cross Generat C, Metab & Biomol Engn Natl Res Lab, Dept Chem & Biomol Engn,BK21 Plus Program,Inst Bi, Daejeon 34141, South Korea
[2] Korea Adv Inst Sci & Technol, BioInformat Res Ctr, Daejeon 34141, South Korea
[3] Korea Adv Inst Sci & Technol, BioProc Engn Res Ctr, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
metabolic engineering; Corynebacterium glutamicum; glutaric acid; multiomics; ESCHERICHIA-COLI; 5-AMINOVALERATE; CATABOLISM; PATHWAYS;
D O I
10.1073/pnas.2017483117
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Contributed by Sang Yup Lee, October 6, 2020 (sent for review August 18, 2020; There is increasing industrial demand for five-carbon platform chemicals, particularly glutaric acid, a widely used building block chemical for the synthesis of polyesters and polyamides. Here we report the development of an efficient glutaric acid microbial producer by systems metabolic engineering of an L-lysine-overproducing Corynebacterium glutamicum BE strain. Based on our previous study, an optimal synthetic metabolic pathway comprising Pseudomonas putida L-lysine monooxygenase (davB) and 5-aminovaleramide amidohydrolase (davA) genes and C. glutamicum 4-aminobutyrate aminotransferase (gabT) and succinate-semialdehyde dehydrogenase (gabD) genes, was introduced into the C. glutamicum BE strain. Through system-wide analyses including genome-scale metabolic simulation, comparative transcriptome analysis, and flux response analysis, 11 target genes to be manipulated were identified and expressed at desired levels to increase the supply of direct precursor L-lysine and reduce precursor loss. A glutaric acid exporter encoded by ynfM was discovered and overexpressed to further enhance glutaric acid production. Fermentation conditions, including oxygen transfer rate, batch-phase glucose level, and nutrient feeding strategy, were optimized for the efficient production of glutaric acid. Fed-batch culture of the final engineered strain produced 105.3 g/L of glutaric acid in 69 h without any byproduct. The strategies of metabolic engineering and fermentation optimization described here will be useful for developing engineered microorganisms for the high-level bio-based production of other chemicals of interest to industry.
引用
收藏
页码:30328 / 30334
页数:7
相关论文
共 50 条
  • [31] Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum
    Jojima, Toru
    Noburyu, Ryoji
    Sasaki, Miho
    Tajima, Takahisa
    Suda, Masako
    Yukawa, Hideaki
    Inui, Masayuki
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2015, 99 (03) : 1165 - 1172
  • [32] Metabolic engineering and flux analysis of Corynebacterium glutamicum for L-serine production
    LAI ShuJuan1
    2Graduate University of Chinese Academy of Sciences
    Science China(Life Sciences), 2012, 55 (04) : 283 - 290
  • [33] Modification of Corynebacterium glutamicum by Metabolic Engineering for Pyruvate Production
    Fang Z.
    Cao W.
    Liu J.
    Zhang S.
    Xiao Z.
    Shan Y.
    Journal of Food Science and Technology (China), 2023, 41 (03): : 139 - 147
  • [34] Metabolic engineering of carbohydrate metabolism systems in Corynebacterium glutamicum for improving the efficiency of l-lysine production from mixed sugar
    Xu, Jian-Zhong
    Ruan, Hao-Zhe
    Yu, Hai-Bo
    Liu, Li-Ming
    Zhang, Weiguo
    MICROBIAL CELL FACTORIES, 2020, 19 (01)
  • [35] Metabolic engineering of Corynebacterium glutamicum for acetate-based itaconic acid production
    Schmollack, Marc
    Werner, Felix
    Huber, Janine
    Kiefer, Dirk
    Merkel, Manuel
    Hausmann, Rudolf
    Siebert, Daniel
    Blombach, Bastian
    BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS, 2022, 15 (01):
  • [36] Stepwise metabolic engineering of Corynebacterium glutamicum for the production of phenylalanine
    Kataoka, Naoya
    Matsutani, Minenosuke
    Matsushita, Kazunobu
    Yakushi, Toshiharu
    JOURNAL OF GENERAL AND APPLIED MICROBIOLOGY, 2023, 69 (01): : 11 - 23
  • [37] Recent Advances in engineering Corynebacterium glutamicum for production of Lysine
    Divya, Kakara
    Malothu, Ramesh
    Dowlathabad, Muralidhara Rao
    Suman, Dheerendra Kumar
    Erva, Rajeswara Reddy
    RESEARCH JOURNAL OF BIOTECHNOLOGY, 2022, 17 (12): : 190 - 206
  • [38] Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid
    Jae Ho Shin
    Seok Hyun Park
    Young Hoon Oh
    Jae Woong Choi
    Moon Hee Lee
    Jae Sung Cho
    Ki Jun Jeong
    Jeong Chan Joo
    James Yu
    Si Jae Park
    Sang Yup Lee
    Microbial Cell Factories, 15
  • [39] Systems metabolic engineering of Corynebacterium glutamicum for the efficient production of 13-alanine
    Ghiffary, Mohammad Rifqi
    Prabowo, Cindy Pricilia Surya
    Adidjaja, Joshua Julio
    Lee, Sang Yup
    Kim, Hyun Uk
    METABOLIC ENGINEERING, 2022, 74 : 121 - 129
  • [40] Metabolic engineering of Corynebacterium glutamicum for the efficient production of β-Alanine from glucose
    Song, Ya-Qi
    Zhang, Feng
    Liu, Jie
    Xu, Jian-Zhong
    Zhang, Wei-Guo
    SYSTEMS MICROBIOLOGY AND BIOMANUFACTURING, 2025, 5 (01): : 249 - 260